ITI 2009 Keynote Address

JUNE 22-25, Cavtat / Dubrovnik, Croatia

Organized by University of Zagreb, University Computing Dr RAY ADAMS

Centre - SRCE Cognitive Science meets Computing Science

ITI 2009 Keynote Address

JUNE 22-25, Cavtat / Dubrovnik, Croatia

Organized by University of Zagreb, University Computing

<u>Centre - SRCE</u>

Centre Head

Dr RAY ADAMS

CIRCUA School of Engineering & Information Sciences Middlesex University & Churchill College, University of Cambridge <u>ray.adams@mdx.ac.uk</u>

A Dedication

This keynote is dedicated to the memory of Professor Colin Tully

A collision of two sciences

MY OBJECTIVES

Demonstrate the importance of cognitive science.
Demonstrate the importance of computing science.
Synergy between them!!!!

PROBLEM: the diversity of

MY PROBLEMS

- The diversity of IST offerings.
- The accidental introduction of innovative, new problems
 - For example, GUI and screen readers
 - Competing commands
- Transfer between different systems
- Adapt the user to the system.Different systems but same

PROBLEM: the diversity of users

MY PROBLEMS

- Strengths, weaknesses, abilities & disabilities.
- Background experience & training.
- Age-related differences.
- Cultural differences.
- Adapt the system to the user?
- Design for the designer.
- User centered design.
- User sensitive design.

Why cognitive science?

• Focuses on USERS Supports Acceptability • Supports Accessibility • Supports Usability. - User Modeling - Human & Machine Learning - Universal Access

KEY QUESTION ONE

Why computing science?

- Focuses on RESOURCES
- Focuses on Information Society Technologies
- Supports Functionality
- Supports HUMAN COMPUTER INTERACTION
- Supports Accessibility
- Supports Usability.
- Machine Readable User Modeling
- Human & Machine Learning

KEY QUESTION TWO

FOUR THEMES

THEMES

- 1) UNIVERSAL ACCESS IN THE INFORMATION SOCIETY
 - \checkmark Access anywhere, anytime, by anyone
- 2) USER MODELING FOR PEOPLE AND MICROCHIPS
 - \checkmark Psychology of the person and the machine
- 3) BRAIN COMPUTER INTERFACES
 - The ultimate in accessibility and user modelling
- 4) FUTUROLOGY AND EPISTEMOLOGY
 - Explorations in Human Knowledge

1. UNIVERSAL ACCESS IN THE INFORMATION SOCIETY

Access anywhere, anytime, by anyone

UNIVERSAL ACCESS IN THE INFORMATION SOCIETY

UNIVERSAL ACCESS IN THE INFORMATION SOCIETY

When using this compu	ter, I would like assistance with:
Seeing Hear	ring Keyboard Mouse & Trackpad
VoiceOver:	Turn VoiceOver on or off: %F5
⊖On ⊙Off	Open VoiceOver Utility)
Zoom:	Turn zoom on or off: ೫℃8
⊖On ⊙Off	Zoom in: 第八= Zoom out: 第八- Options)
Display:	Switch to white-on-black: 第てへ8
● Black on White ○ White on Black	🗆 Use grayscale
Enhance contrast:	
r	Normal Maximum
	Reduce contrast: #\`^,

UNIVERSAL ACCESS IN THE INFORMATION SOCIETY

OUR UA RESEARCH (1)

OUR UA RESEARCH (2)

- Systematic identification of assistive technology needs.
- A framework within which to develop accessible systems.
- A framework within which to evaluate accessible systems.
- Capturing user requirements

UNIVERSAL ACCESS IN THE INFORMATION SOCIETY

OUR UA RESEARCH (3)

	Universal Access & Inclusive Design.
	Adams, R. and Langdon, P (2003).
	D SIMPLEX: a simple user check-
	model for Inclusive Design.
	Vocational Context
	D Adams, R. and Keates, L. S.
	(2007).
	D Accessibility Research in a
	Vocational Context
	Insight and awareness in accessibility
	Adams, R. and Langdon, P.
	(2004).
	Assessment, Insight and
6/25/2009	/2009 Awareness In User Centred Design,
	that Includes Users With Special

OUR UA RESEARCH (4)

Universal Access & e-learning D Technology Enhanced Learning Worlds. □ Adams & Granić (2008). **D** The Potential of the BCI for Accessible and Smart e-learning 🗆 Adams, Comley & Ghoreyshi (2009). Universal Access & Multimedia. Evaluating the next generation of multimedia software D Adams, 2008. 6/25/2009

18

OUR UA RESEARCH (5)

Universal Access & Cognitive Augmentation. **Adams**, R. (2006) Applying advanced concepts of cognitive overload and augmentation in practice; the future of overload. Universal Access & Ambient Intelligence. □ Adams, R. And Russell, C. (2006). Lessons from Ambient Intelligence Prototypes for Universal Access and the User Experience. User Modeling. Adams, R. (in press). 6/25/2009 User modelling & monitoring. 19

2. User Modeling (1)

 We needed a more systematic approach to the identification of user requirements

6/25/2009

NO 2 HB

20

User Modeling (2)

This led us to

 a
 consideration
 of relevant
 theories of
 human
 cognitive
 psychology.

6/25/2009

NO 2 HB

User Modeling (3)

• It turns out that such theories tend to fall into at least THREE categories

• Complex (ACT-R)

NO 2 HB

User Modeling (4)

- We adopted the Maltese cross, as it is:
- Powerful
- Research based
- Modal
- Accessible.

NO 2 HB

SIMPLEX ONE

OUTPUT

WORKING MEMORY

EXECUTIVE

LONG TERM MEMORY

6/25/2009

NO 2 HB

24

User Modeling (6)

- Adams (2007)
- Decision and Stress: Cognition and e-Accessibility in the Information Workplace.
- Universal Access in the Information Society. 5, 363-379.

• Validation for 6/25/2009 plex Two

INO 2 HB

WIE GEHT ES

3. Brain Computer Interface • The Ultimate in:

- Accessibility?
- User modeling?

Experience the Next Generation User Interface

6/25/2009

3. Brain Computer Interface

- G.tech technology
- @ Middlesex University

Brain Computer Interface

6/25/2009

- Links with accessibility research?
- Adams, Bahr & Moreno (2008).
- Brain Computer Interfaces: Psychology and Pragmatic Perspectives for the Future.

Brain Computer Interface

6/25/2009

- BCI for e-learning?
- The Potential of the BCI for Accessible and Smart e-learning.
- Ray Adams, Richard Comley & Mahbobeh Ghoreyshi.
- HCI International 2009.

4) Surfing the Future

- What does the future hold?
- What can we learn from cognitive & computing science?

Future Scenario One

 Robots as appliances?

Human & Machine Nature? Where is the soul?

When this

Becomes that?

6/25/2009

Now for a movie! ':-')

That's all, folks! '=)