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• A Study on the Clustering of Residence and 

Breast Cancer Risk 
• DBP in water and bladder and rectal cancer
• Hierarchical Bayesian modeling of the spatio-

temporal patterns of lung cancer incidence risk 
• Mortality to Incidence Ratios MIR for Cancer
• Statistical Challenges to Linking Spatial Pattern 

of Cancer to Radiation Exposure
• Discussion



Spatial Epidemiology

• The analysis of spatial/geographical distribution of the 
incidence of disease

• Spatial hypotheses
– Disease mapping
– Ecological analysis
– Disease clustering

• General
• Focused



What is a GIS?

• System that captures, 
stores, analyzes, 
manages, & presents data 
linked to location

• Allows: interactive queries, 
analysis of spatial 
information, data editing, 
map creation, result 
presentation



Figure: Vine MF, Degnan D, Hanchette C. Geographic Information Systems: Their Use in Environmental 
Epidemiology Research. Environmental Health Perspectives 1997; 105(6) : 598-605



What is GIS ?
• Combining data from 

various sources
• Linking multiple databases
• Visualizing data 

effectively
• Turing data into 

information: spatial 
analysis

• “Interactive” maps and 
databases: Query



Benefits of GIS

• GIS are useful in handling and 
manipulating  large and various sources 
of datasets. 

• GIS are useful for the analysis of 
different types of data using spatial 
analysis methods.

• GIS are useful for further analysis with 
integration of other data or tools. 

• GIS are useful for mapping at various 
geographic scales. 



GIS Applications in Public Health
• Disease mapping;

- Mapping populations at risk
- Determining spatial patterns of diseases
- Analyzing spatial and temporal trends
- Visualizing areas of elevated risk. 

• Analytical spatial analyses;
- Modeling exposures to environmental 
factors
- Stratifying risk factors



GIS Applications in Public Health
- Detecting disease clustering
- Evaluating health care access and delivery 
of health services. 

• Intervention and prevention;
- Infectious disease surveillance and control
- Outbreak investigation and response 
- Assessing resource allocation
- Planning and targeting interventions
- Monitoring diseases and interventions over 
time. 
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Geographical and Environmental 
Risk Factors for Breast Cancer

• We do not fully understand mechanisms for 
the known risk factors; eg. Why changes in 
age at menarche have an impact on breast 
cancer risk 

• There is a substantial geographical variation in 
breast cancer incidence and mortality in the 
US (Lacey et al. 2002) 

• Environmental risk factors are believed to be 
involved in breast cancer incidence (Wolff et 
al. 1996; Laden and Hunter, 1998)



Retrospective (case-control) studyRetrospective (case-control) study

Disease
Y              N

Exposure
Y

N

Select on disease status
Explore exposure in past

Common exposures
Rare diseases
Moderate numbers

Recall and selection bias
Adequate controls hard 

to define or obtain

A          B

C          D

A + C     B + D



Western New York Exposures and 
Breast Cancer (WEB) Study

• Women, age 35-79 with incident, primary, 
pathologically confirmed breast cancer 
diagnosed in Erie and Niagara counties 
during the period 1996-2001.

• Controls were randomly selected and 
frequency matched to cases on age, race and 
county of current residence; controls under 
65 years of age were selected from a 
NYSDMV list and those 65 years and over 
from a HCFA list.



WEB Study

• No previous cancer diagnosis other than 
non-melanoma skin cancer.

• Extensive in-person interviews and self-
administered questionnaires were used to 
ascertain medical history, diet, lifetime 
alcohol consumption, residential history, 
occupational history, and smoking 
history. 



Residence as a Proxy for 
Exposures

• Based on the life-course approach, 
residences were used as a proxy for 
exposures to investigate the relationships 
between exposures and breast cancer risk. 



Lifetime Residential History 
• Lifetime residential history of all participants; 

- 20,240 lifetime addresses
- An average of six addresses for each 
individual. 

• Temporal groups; 
- Residence at birth
- Residence at menarche, and at women’s first 

birth
- 20 years & 10 years prior to 

diagnosis/interview
- Current residence



Address Matching (Geocoding)

• Process of linking records in two databases 
(eg. place residential location on street map)

• Essential for further spatial analyses
• Steps: preparation, geocoding, and review 

and evaluation stages. 



Address Matching: Steps
• Preparation stage: error checking and 

standardizing address components of 
residential history data (event theme).

• Geocoding stage: batch and interactive 
matching of event theme on reference theme 
(street map) 

• Evaluation stage: review of unmatched 
addresses and polk searches for incomplete 
addresses.



Geocoding Results

Geocoding of residential history Count (%)
Lifetime residential history obtained
Erie and Niagara county addresses 
Addresses for six temporal groups 

20,240
15,487
14,493 (100%)

Total matched  
a) Batch match 
b) Interactive match

13,405 (92.5%)
12,404 (85.6%)
1,001 (6.9%)

Total unmatched
a) Unable to match 
b) Incomplete addresses 

1,088 (7.5%)
195 (1.34%)
893 (6.16%)



Breast Cancer Risk and Exposure in Early Life to Polycyclic
Aromatic Hydrocarbons Using Total Suspended

Particulates as a Proxy Measure

Matthew R. Bonner, Daikwon Han, Jing Nie, Peter Rogerson,
John E. Vena, Paola Muti,Maurizio Trevisan, 

Stephen B. Edge, and Jo L. Freudenheim

Cancer Epidemiol Biomarkers Prev 2005;14(1). January 2005



Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the
environment and present in air pollution.  Early life exposure to 
PAHs may have particular importance in the etiology of breast cancer.

We conducted a population-based, case-control study of 
ambient PAH exposure in early life in relation to the risk of breast cancer.
Total suspended particulates (TSP), a measure of ambient air pollution,
was used as a proxy for PAH exposure.  

Cases were 1,166 women with
histologically-confirmed, primary, incident breast cancer.  
Controls (n=2,105) were frequency matched by age, race, and county 
of residence to cases.  

Annual average TSP concentrations (1959-1997)
were obtained from the New York State Department of Environmental 
Conservation for Erie and Niagara Counties.  Based on the monitor readings 
for each time period,  prediction maps of TSP concentrations were 
generated with ArcGIS 8.0 (ESRI, Inc., Redlands, CA) using inverse 
distance squared weighted interpolation. 



Statistical Analysis
Unconditional logistic regression was used to estimate odds 

ratios (OR) and 95% confidence intervals (95% CI).  TSP 
concentrations were categorized into 4 levels (<84 ug/m3, 
84-114 ug/m3, 115-140ug/m3, and >140ug/m3).  The cut 
points for the categorical analyses were derived from the 
quartiles of the distribution of measurements of TSP 
concentrations in the 1960s.  

We also examined TSP concentrations on a continuous 
scale.  Further, logistic quadratic spline regression with 
knots at 84 μg/m3 and 140 μg/m3 was used to graphically 
depict the exposure-response trend; the estimated 
probability of being a case was calculated from the 
quadratic spline regression equation.  The values for the 
two knots in the spline regression were selected based on 
the previous categorical analysis.  The end categories 
were restricted to linear segments to prevent instability. 





Study Question

Is exposure to high total suspended 
particulates associated with 
occurrence of breast cancer?

1. Birth 
2. Menarche 
3. First birth
4. 20 years before diagnosis
5. 10 years before diagnosis
6. Cumulative exposure





ORs and 95%CI: TSP at Birth 
Address

Adjusted for age, education, age at menarche, benign breast disease, 
parity, BMI, family hx. (Cases n=505; Controls n=804)
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ORs and 95%CI: TSP at Birth 
Address- Postmenopausal women

TSP μg/m3 Cases  
(n=345)

Controls 
(n=521)

Adjusted OR 
(95% CI)

<81 6 18 1.00

81-99 7 12 1.7 (0.4-6.8)

100-135 156 238 2.2 (0.8-6.0)

>135 176 253 2.6 (1.0-7.0)

P for trend 0.009

Adjusted for age, education, age at menarche, benign breast disease, parit



Figure 2.  Estimated Probability of Being a Case for Postmenopausal Women
by Total Suspended Particulate Concentration at Birth Address.



Figure 3. Estimated Probability of Being a Case for Premenopausal Women
by Total Suspended Particulate Concentration at Birth Address.



Summary

Exposure to high TSP concentrations 
appear to be associated with an 
increase in risk of breast cancer in 
postmenopausal women.
– TSP at birth

TSP exposure was not associated with 
premenopasual breast cancer.











Locations of THM sample sites used in kriging



bromodichloromethane

Chloroform

Total 551
Bladder Cancer
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Higher levels of consumption of THMs led to
increased risk for cancer of the urinary bladder 
(Total 551 (a composite measure of THMs) OR 
=2.34, 95 % CI = 1.01-3.66).

Results were most significant for Bromoform (OR 
= 3.05, 95 % CI = 1.51-5.69), and risk was highest 
(OR = 5.85, 95% CI = 1.93-17.46) for those who 
consumed the greatest amount of water at points 
within the distribution system with the oldest 
postdisinfection tap water.





Chlorodibromomethane

Bromoform
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• Results: Trihalomethane levels varied spatially within 
the county; increasing levels of the component 
bromoform (measured in ug/day) did correspond with an 
increase in odds ratios (OR = 1.85; 95% CI = 1.25 –
2.74) for rectal cancer.

• The highest quartiles of estimated consumption of 
bromoform (1.69–15.43 ug/day) led to increased risk for 
rectal cancer (OR = 2.32; 95% CI = 1.22–4.39).

• Two other THMs were marginally associated with an 
increase in risk – chlorodibromomethane (OR = 1.78, 
95% CI = 1.00–3.19) and bromodichloromethane (OR = 
1.15; 95% CI =1.00–1.32).

Conclusion: Levels of THMs in the water distribution 
system exhibited spatial variation that was partially due 
to variation in water age. We also observed a geographic 
pattern of increased risk of rectal cancer in areas with 
the highest levels of bromoform in the county.



Hierarchical Bayesian modeling of the 
spatio‐temporal patterns of lung cancer 
incidence risk in Georgia, U.S. 2000‐2007

2000 2002 2004 2006

Ping Yin
Department of Geography

University of Georgia



• Study Purposes:
– Obtain reliable spatio‐temporal pattern of lung 

cancer incidence risk  in Georgia at small scales

– Understand the  difference in the effects of 
socioeconomic status (SES) on the risk of each 
population subgroup

• Study Design: 
– Time period: 2000 ‐2007 (2‐year analytical unit)

– Population strata: 

Race (white and black); 
Sex: male and female

– Data: Georgia Comprehensive Cancer Registry 
(GCCR) and  census data

Introduction Methodology Results Conclusions



 itkitkitk RE~Poisson  y

Behavior

Environment

Socioeconomic

Health care

Genetics

Measured 
variables

Unobserved 
variables

Space

Time

Space ‐Time 

Coef *Measure

Fixed effects

Random effects

Health Risk Factors

Modeling of 
Relative Risk 
(RR)

Priors for all parameters  in above levels

Level1

Level2

Level3

Introduction Methodology Results Conclusions
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• Model Selection
– Compare 5 joint models and 2 separate models

– Deviance Information Criterion (DIC)

• Final Model : Joint mapping

Relative Risk 
at log scale

Intercept
Shared spatial 
random effects

Specific spatial 
random effects

Tract index: i=1, 2, …1618;
Time period index: t=1, 2, 3, 4; 
Population group index: k=1, 2, 3, 4;

SES 
effect

Shared 
temporal 

random effects

Specific temporal 
random effects

Autocorrelation is considered in the  priors 
for all spatial and temporal random effects

Introduction Methodology Results Conclusions

Specific spatio‐
temporal 
interaction



Introduction Methodology Results Conclusions

White  Male White Female Black  Male Black  Female

Standardized Incidence Rates (SIR)2000‐2001

Relative Risks (RR) from Modeling 2000‐2001

SIR= # Observed  cases/ # Expected cases



Introduction Methodology Results Conclusions

White  Male White Female Black  Male Black  Female



Elevated Risk Criterion: 
Prob(RR>1) > 0.8

Introduction Methodology Results Conclusions

White  Male White Female Black  Male Black  Female

Frequency of Elevated Relative Risks for Each Tract during 2000‐2007



• Bayesian modeling with shared components makes smooth 
risk maps by borrowing strengths from neighboring regions 
and time periods, as well as other population groups. 

• Northwest Georgia has stably high elevated lung cancer 
incidence relative risk for all races/sexes over 2000‐2007.

• The SES effect on lung cancer incidence relative risk has a 
larger gradient in males, especially white males.

Introduction Methodology Results Conclusions



• Smoking data (if available) are expected to improve the 
modeling.

• SES is assumed static in this research and the long latency 
of cancers makes the SES 20 years prior to the death may 
be important.

• Estimation of population at risk could cause errors in the 
modeling.

Introduction Methodology Results Conclusions



CANCER MORTALITY-TO-
INCIDENCE RATIOS IN GEORGIA

Wagner SE, Hurley DB, Hebert JR, McNamara C, Bayakly AR, 
Vena JE. Cancer mortality-to-incidence ratios in Georgia: 
describing racial cancer disparities and potential geographical 
determinants Cancer



The Mortality-to-Incidence Ratio

• Mortality-to-incidence ratio (MIR)
MIR = (age-adjusted mortality cancer rate) 

(age-adjusted incidence cancer rate)

• AKA 
– Fatality ratio
– Fatality, given incidence
– 1/survival, given incidence



Introduction

• Racial disparities in cancer outcomes are 
large
– Mortality

• US: Blacks 25% higher mortality than other (all 
cancers)

• Disparities are very large
• Blacks have more aggressive tumors

– Incidence
• Usually higher in Blacks, but not always

– Breast cancer

• Disparities are present, but not as large



Methods
• Cancer incidence and mortality data by 

health district, 2003-2007
– All sites combined, lung & bronchus, colorectal, 

female breast, oral, cervical, prostate
• Population data: NCHS bridged population 

estimates
• MIRs and 95% CI’s generated by site, race, 

sex
• MIRs were mapped & compared to 

geographic health factors (County Health 
Rankings)



Health Factors
• Health Behaviors

– Tobacco use; diet & exercise; alcohol use; unsafe 
sex

• Clinical Care
– Access to care; quality of care

• Socioeconomic Factors
– Education; employment; income; family & social 

support; community safety
• Physical Environment

– Environmental quality; built environment



Health Factor Analysis

• County-level Z-scores averaged by health 
district
– Positive Z-score: “greater risk” for worse 

health outcomes than average GA counties
– Negative Z-score: “lower risk” for worse health 

outcomes than average GA counties
• Mapped by health district
• Correlation analysis between Z-scores and 

MIRs by health district



Results

• 186,419 incidence cancers (all sites)
• 71,533 cancer deaths (all sites)





Mapping Display Cutoff Points

• Category 1: mean MIR for whites 
nationally

• Category 2: upper bound 10% higher than 
upper bound of Category 1

• Category 3: upper bound 20% higher than 
upper bound of Category 1

• Category 4: upper bound >20% higher 
than upper bound of Category 1

















Discussion

• Blacks had more fatal cancers than whites 
for all cancer sites

• Higher MIRs were observed among blacks 
in SC compared with blacks in GA
– Except cervical cancer

• Worst health outcomes in West and East 
Central health districts



Strengths/Limitations

• County Health Rankings system
• Use of health districts
• MIR

– Efficient
– Avoids survival studies

• GCCR data



Summary

• Larger MIRs for blacks
– Especially prostate, cervical, oral cancer in 

men
• More fatal cancers in West and East 

Central Georgia
• May be related to health behavior, clinical 

care, social/economic factors





Figure 3. Predicted radon concentration surface.



Table 1. Adjusted and stratified relationship of predicted log-transformed radon concentrations 
[log(pCi/L)] by county and cancer incidence (specific cancer site vs. cervical cancer control).

Unadjusted Adjusted*

Cancer Site Odds Ratio 95% CI Odds Ratio 95% CI

Lung & bronchus (n=34,355) 1.02 0.93, 1.13 0.97 0.86, 1.08

Kidney & renal pelvis (n=6,539) 1.04 0.94, 1.16 0.87 0.76, 1.01

Female breast (n=33,540) 1.21 1.10, 1.34 1.07 0.97, 1.19

Leukemia (n=10,195) 1.11 0.97, 1.23 0.91 0.68, 1.24

Colorectal (n=23,077) 1.03 0.93, 1.14 0.98 0.89, 1.12

Urinary bladder† (n=8,228) 1.20 1.07, 1.33 0.99 0.83, 1.19

Bold values refer to a statistically significant association based on confidence intervals.
CI: confidence interval
Cervical cancer controls N=2,323.
*Adjusted models control for: race, gender (except breast), tumor stage, county-level median 
household income.
† Urinary bladder cancer includes in situ cases.



Data Layers
Cancer Data: Georgia Comprehensive Cancer Registry
Point locations of subjects with seven cancer types:
1. Bladder
2. Breast
3. Colorectal
4. Kidney
5. Leukemia
6. Lung
7. Other

Individual-level covariates:
 Age
 Gender
 Race (White vs. Non-White)

Radionuclide data
Geologic Data

2



Data Layers
Cancer Data: Georgia Comprehensive Cancer Registry
Radionuclide data

Groundwater Uranium. National Uranium Resource Evaluation Program

Household Radon. University of Georgia Cooperative Extension
Geologic Data
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Data Layers
Cancer Data: Georgia Comprehensive Cancer Registry
Radionuclide data

Groundwater Uranium. National Uranium Resource Evaluation Program
Household Radon. University of Georgia Cooperative Extension

Geologic Data
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Data Layers
Cancer Data: Georgia Comprehensive Cancer Registry
Radionuclide data

Groundwater Uranium. National Uranium Resource Evaluation Program
Household Radon. University of Georgia Cooperative Extension

Geologic Data
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Three-Stage Hierarchical Spatial Model
I. Stage 1. Geostatistical model for radionuclide levels.
II. Stage 2. Logistic regression model for cancer data.
III. Stage 3. Prior Model
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Three-Stage Hierarchical Spatial Model
I. Stage 1. Geostatistical model for radionuclide levels.

Radionuclide level Zs at location s is described by the spatial regression
model

logZs  i  s; s ∈ Ai,
where Ai is the set of locations in rock type i, i is the mean radionuclide
level in rock type i, s is a zero-mean Gaussian random field with
exponential covariance function

Cr; 
21 − d0exp−r; r  0
2; r  1

and r is great circle distance.
II. Stage 2. Logistic regression model for cancer data.
III. Stage 3. Prior Model
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Three-Stage Hierarchical Spatial Model
I. Stage 1. Geostatistical model for radionuclide levels.
II. Stage 2. Logistic regression model for cancer data.

Conditional on the realization of the radionuclide random field:
∙ Controls are sampled from a point process with baseline intensity

0u

∙ Cancer cases are sampled from a point process with intensity
1u  0uexp′xu

where the vector xu includes log radionuclide concentration, and
confounders such as age, race, etc.
If both point processes are Poisson then the cancer indicators Yui

for event at location ui; i  1,,m are independently sampled from a
Bernoulli distribution with probabilities qui described by the logistic
regression model

log pui
1 − pui

 ′xu

III. Stage 3. Prior Model
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Three-Stage Hierarchical Spatial Model
I. Stage 1. Geostatistical model for radionuclide levels.
II. Stage 2. Logistic regression model for cancer data.
III. Stage 3. Prior Model

Geostatistical Model for Radionuclide Exposure
logZs  i  s; s ∈ Ai

Cr;  21 − d0exp−r; r  0

∙ Mean log radionuclide levels i

i  1

∙ Variance 2

2  1/2

∙ Nugget effect
d0  U0,1

∙ Range parameter
e  U0,1

Handcock and Stein (1993) Technometrics 35, 403-410.
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Three-Stage Hierarchical Spatial Model
I. Stage 1. Geostatistical model for radionuclide levels.
II. Stage 2. Logistic regression model for cancer data.
III. Stage 3. Prior Model

Logistic regression model for cancer indicator

log pui
1 − pui

 ′xu

Regression coefficients
  N0,2I,
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Inferential Issues
Spatial Misalignment: Sites s1,, sn at which radionulide levels are not the
same as the sites u1,,um at which cases and controls are observed.
Some Examples:
 Zhu, Carlin and Gelfand (2003; Environmetrics): Effect of ozone exposure on

pediatric asthma in zip codes of Atlanta.
 Greco, Lawson, Cocchi and Temples (2005; Environmental and Ecological

Statistics): Effect of uranium exposure on cancer incidence in zip codes of
northern South Carolina.

 Fuentes, Song, Ghosh, Holland and Davis (2006; Biometrics): Effect of PM2.5 on
deaths due to natural and cardiovascular disease in U.S. counties.

 Smith, Zhang and Field (2007; Statistics in Medicine): Effect of radon exposure on
leukemia in Iowa counties.

In these studies:
1. Disease counts are aggregated within regions such as zip codes or

counties
2. Exposure measured at point locations.

Issue: Ecologic Bias
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Bayesian Approaches
Notation:

Observed Radionuclide Data Z0  Zs1,Zsn′

Unobserved Radionuclide Data at Case/Control Sites Z1  Zu1,Zum′

Cancer Indicator at Case/Control Sites Y  Yu1,Yum′

Radionuclide Parameters   ,2,d0,

Cancer Parameters 

Marginal distribution of observed data:

pY,Z0|,   pY|Z1,pZ1|Z0;,pZ0|,dZ1

Data Augmentation (Chib and Greewood 1998; Weir and Pettitt 1999, 2000;
De Oliveira 2000)
Instead of drawing samples from the posterior distribution

p,|Y,Z0  pY,Z0|,,
samples are drawn from

p,,Z1|Y,Z0  pY|Z1,pZ1|Z0;pZ0|,
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Alternative Approaches:
 Fully Bayesian Approach: Sample from the posterior distribution

p,,Z1|Y,Z0  pY|Z1,pZ1|Z0;pZ0|,

 Two-Stage Bayesian Approach: (Gryparis et al. 2009; Lee and Shadick 2010)
Stage 1. Sample  from the posterior of the exposure model

p|Z0  pZ0|
and sample the unobserved Z1 from the posterior predictive
distribution

pZ1|Z0;

Stage 2. Sample  from the posterior of the health-effects model
p,Z1|Y,Z0,  pY|Z1,pZ1|Z0;

where the posterior predictive distribution pZ1|Z0; is treated as the
prior for Z1 in the health-effects model.

Consider two versions of the two-stage Bayesian approach:
1. No feedback between health outcome and exposure estimates.
2. Yes, there is feedback between health outcome and exposure estimates.
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Breast Cancer Data: Treat remaining cancer types as a control group.
Predictors:

Exposure Model Cancer Indicator
4 Rock Types Uranium Exposure (well water)

Age

14



Iterates of MCMC Algorithm for Breast Cancer
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Variogram against lag iterate for exposure effect.
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Adjusted odds ratios for the effects of uranium exposure for two-stage Bayesian
inference with and without feedback between pattern of cancer cases and
predicted uranium exposures.

Cancer No Feedback Feedback
Bladder 0.02 (0.00, 1.08) 0.01 (0.00, 1.05)
Breast 1.38 (0.14, 4.65) 1.36 (0.16, 5.06)
Colorectal 2.17 (0.40, 12.95) 2.32 (0.50, 13.69)
Kidney 0.10 (0.00, 4.08) 0.08 (0.00, 7.42)
Lung 0.84 (0.18, 3.13) 0.84 (0.14, 3.15)
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Additional Challenges
 Left censoring of Radon levels below minum detection limits.

Solution: Method of De Oliviera (2005; Journal of Computational and Graphical
Statistics).

 Large number of observations of radon and uranium in the full Georgia data set.
Solutions:
 Predictive process model (Finley, Sang, Banerjee and Gelfand 2009;

Computational Statistics and Data Analysis)
 Fixed rank kriging (Cressie and Johannson 2008; JRSSB).
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