

Applications of Geographic Information Systems in Environmental Epidemiology

John E. Vena, Ph.D., Sara E. Wagner, Ph.D., MSPH and Stephen L. Rathbunjvena@uga.eduswagner@uga.edurathbun@uga.edurathbun@uga.edu

Be Part of the Solution

© 2008, The University of Georgia. All rights reserved.

Outline of the Presentation

- Research Background
- TSP Air pollution and Breast Cancer
- A Study on the Clustering of Residence and Breast Cancer Risk
- DBP in water and bladder and rectal cancer
- Hierarchical Bayesian modeling of the spatiotemporal patterns of lung cancer incidence risk
- Mortality to Incidence Ratios MIR for Cancer
- Statistical Challenges to Linking Spatial Pattern of Cancer to Radiation Exposure
- Discussion

Spatial Epidemiology

- The analysis of spatial/geographical distribution of the incidence of disease
- Spatial hypotheses
 - Disease mapping
 - Ecological analysis
 - Disease clustering
 - General
 - Focused

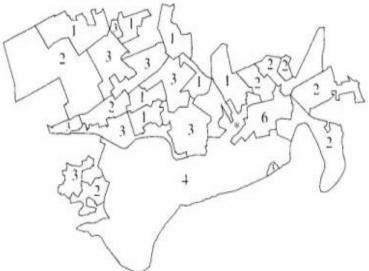
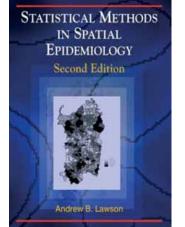
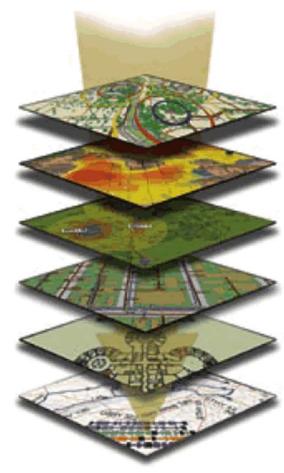


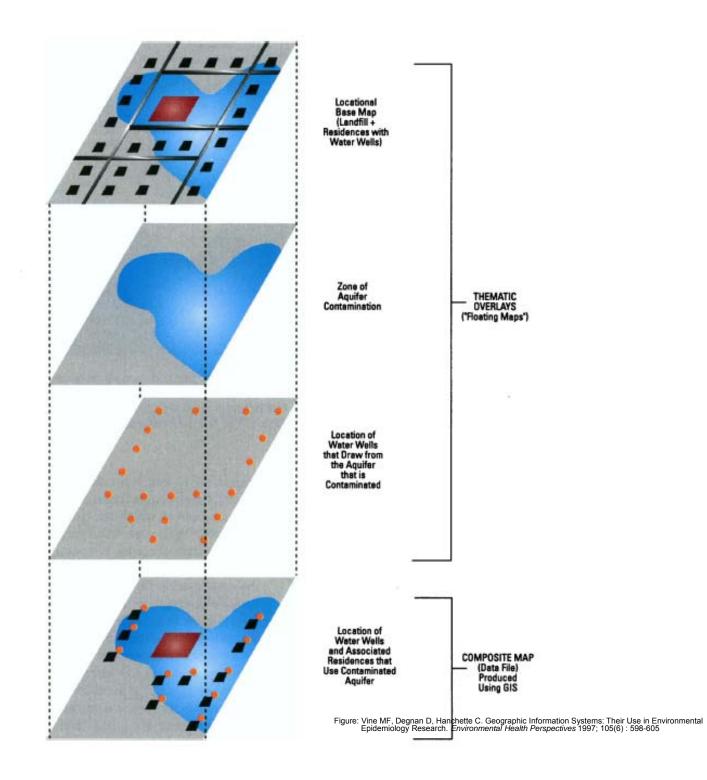
Figure 1.1 Falkirk: central Scotland respiratory cancer counts in 26 census enumeration districts over a fixed time period * Potative health hazard.



What is a GIS?

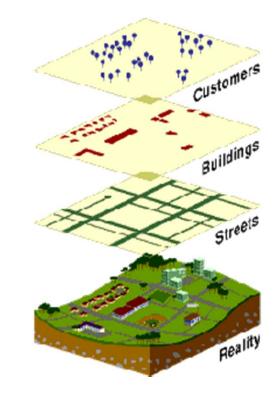
- System that captures, stores, analyzes, manages, & presents data linked to location
- Allows: interactive queries, analysis of spatial information, data editing, map creation, result presentation





What is GIS ?

- Combining data from various sources
- Linking multiple databases
- Visualizing data effectively
- Turing data into information: spatial analysis
- "Interactive" maps and databases: Query



Benefits of GIS

- GIS are useful in handling and manipulating large and various sources of datasets.
- GIS are useful for the analysis of different types of data using spatial analysis methods.
- GIS are useful for further analysis with integration of other data or tools.
- GIS are useful for mapping at various geographic scales.

GIS Applications in Public Health

- Disease mapping;
 - Mapping populations at risk
 - Determining spatial patterns of diseases
 - Analyzing spatial and temporal trends
 - Visualizing areas of elevated risk.
- Analytical spatial analyses;
 - Modeling exposures to environmental factors
 - Stratifying risk factors

GIS Applications in Public Health

- Detecting disease clustering
- Evaluating health care access and delivery of health services.
- Intervention and prevention;
 - Infectious disease surveillance and control
 - Outbreak investigation and response
 - Assessing resource allocation
 - Planning and targeting interventions
 - Monitoring diseases and interventions over time.

Address 🙆 http://www.spatial.maine.edu/~max/nih.html

Spatio-Temporal GIS Analysis for Environmental Health

W •

1

😰 🛃 💭 Search 📌 Favorites 💽 Media 🊱 📿 - 🚵

Funding Agency:

C Back 🔹

National Institute of Environmental Health Sciences

健 😂 🔥 🖸 🕑

Principal Investigators:

- David Mark
- Max Egenhofer

Collaborators

- Ling Bian
- Kathleen Hornsby
- Peter Rogerson
- John Vena

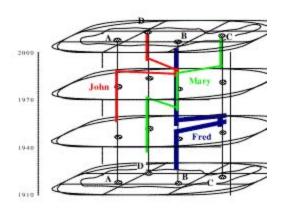
Project Summary:

1

start

This research project focuses on the extraction of health-related information from geospatial lifelines, which capture individuals' locations in geographic space a regular or irregular temporal intervals. The objectives of our work are to develop and test the theory of geospatial lifelines in the environmental health sciences 1

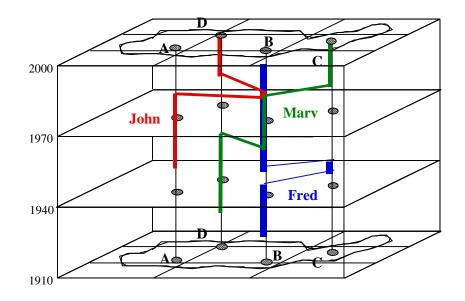
- developing methods to trace locations of individual people (patients, cases, or controls) back through time, to discover spatial clusters in the past or to determine past environmental exposures,
- · designing, prototyping, and assess computational models that can deal with large sets of geospatial lifelines and environmental information, and
- examining the ethical and legal implications of recording individuals' geospatial lifelines in databases, and establishing procedures for appropriate restricti-



💙 🔁 Go

🙆 Internet

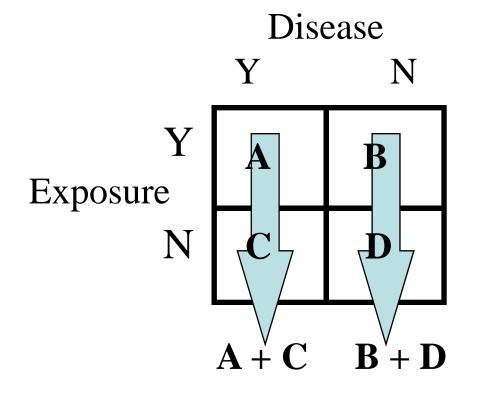
Geospatial Lifelines



Geographical and Environmental Risk Factors for Breast Cancer

- We do not fully understand mechanisms for the known risk factors; eg. Why changes in age at menarche have an impact on breast cancer risk
- There is a substantial geographical variation in breast cancer incidence and mortality in the US (Lacey et al. 2002)
- Environmental risk factors are believed to be involved in breast cancer incidence (Wolff et al. 1996; Laden and Hunter, 1998)

Retrospective (case-control) study



Select on disease statusExplore exposure in past

Common exposuresRare diseasesModerate numbers

 Recall and selection bias
 Adequate controls hard to define or obtain

Western New York Exposures and Breast Cancer (WEB) Study

- Women, age 35-79 with incident, primary, pathologically confirmed breast cancer diagnosed in Erie and Niagara counties during the period 1996-2001.
- Controls were randomly selected and frequency matched to cases on age, race and county of current residence; controls under 65 years of age were selected from a NYSDMV list and those 65 years and over from a HCFA list.

WEB Study

- No previous cancer diagnosis other than non-melanoma skin cancer.
- Extensive in-person interviews and selfadministered questionnaires were used to ascertain medical history, diet, lifetime alcohol consumption, residential history, occupational history, and smoking history.

Residence as a Proxy for Exposures

• Based on the life-course approach, residences were used as a proxy for exposures to investigate the relationships between exposures and breast cancer risk.

Lifetime Residential History

- Lifetime residential history of all participants;
 - 20,240 lifetime addresses

- An average of six addresses for each individual.

- Temporal groups;
 - Residence at birth

- Residence at menarche, and at women's first birth

- 20 years & 10 years prior to diagnosis/interview

- Current residence

Address Matching (Geocoding)

- Process of linking records in two databases (eg. place residential location on street map)
- Essential for further spatial analyses
- Steps: preparation, geocoding, and review and evaluation stages.

Address Matching: Steps

- Preparation stage: error checking and standardizing address components of residential history data (event theme).
- Geocoding stage: batch and interactive matching of event theme on reference theme (street map)
- Evaluation stage: review of unmatched addresses and polk searches for incomplete addresses.

Geocoding Results

Geocoding of residential history	Count (%)
Lifetime residential history obtained	20,240
Erie and Niagara county addresses	15,487
Addresses for six temporal groups	14,493 (100%)
Total matched	13,405 (92.5%)
a) Batch match	12,404 (85.6%)
b) Interactive match	1,001 (6.9%)
Total unmatched	1,088 (7.5%)
a) Unable to match	195 (1.34%)
b) Incomplete addresses	893 (6.16%)

Breast Cancer Risk and Exposure in Early Life to Polycyclic Aromatic Hydrocarbons Using Total Suspended Particulates as a Proxy Measure

> Matthew R. Bonner, Daikwon Han, Jing Nie, Peter Rogerson, John E. Vena, Paola Muti, Maurizio Trevisan, Stephen B. Edge, and Jo L. Freudenheim

> Cancer Epidemiol Biomarkers Prev 2005;14(1). January 2005

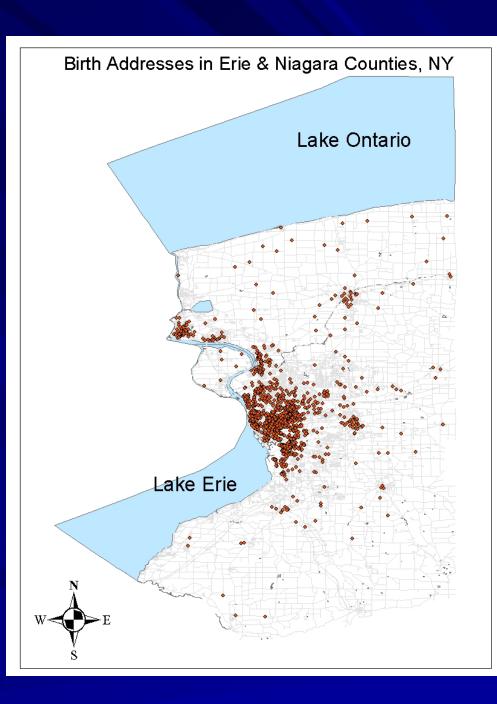
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment and present in air pollution. Early life exposure to PAHs may have particular importance in the etiology of breast cancer.

We conducted a population-based, case-control study of ambient PAH exposure in early life in relation to the risk of breast cancer. Total suspended particulates (TSP), a measure of ambient air pollution, was used as a proxy for PAH exposure.

Cases were 1,166 women with histologically-confirmed, primary, incident breast cancer. Controls (*n*=2,105) were frequency matched by age, race, and county of residence to cases.

Annual average TSP concentrations (1959-1997) were obtained from the New York State Department of Environmental Conservation for Erie and Niagara Counties. Based on the monitor readings for each time period, prediction maps of TSP concentrations were generated with ArcGIS 8.0 (ESRI, Inc., Redlands, CA) using inverse distance squared weighted interpolation. Statistical Analysis

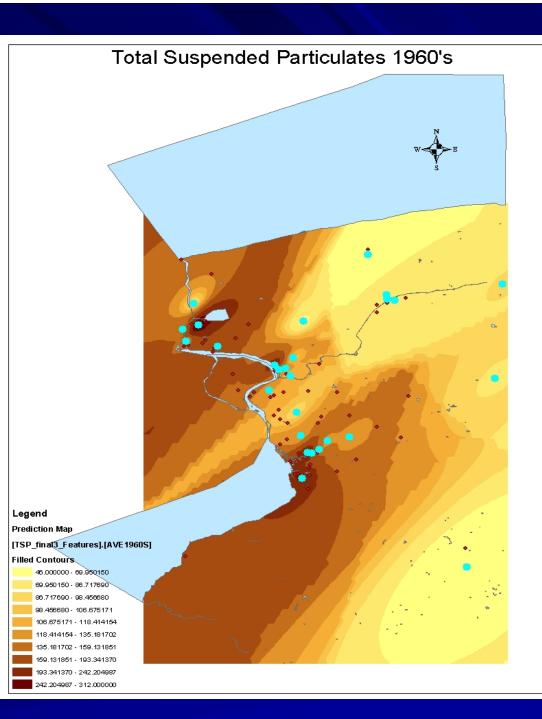
- Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI). TSP concentrations were categorized into 4 levels (<84 ug/m3, 84-114 ug/m3, 115-140ug/m3, and >140ug/m3). The cut points for the categorical analyses were derived from the quartiles of the distribution of measurements of TSP concentrations in the 1960s.
- We also examined TSP concentrations on a continuous scale. Further, logistic quadratic spline regression with knots at 84 µg/m3 and 140 µg/m3 was used to graphically depict the exposure-response trend; the estimated probability of being a case was calculated from the quadratic spline regression equation. The values for the two knots in the spline regression were selected based on the previous categorical analysis. The end categories were restricted to linear segments to prevent instability.



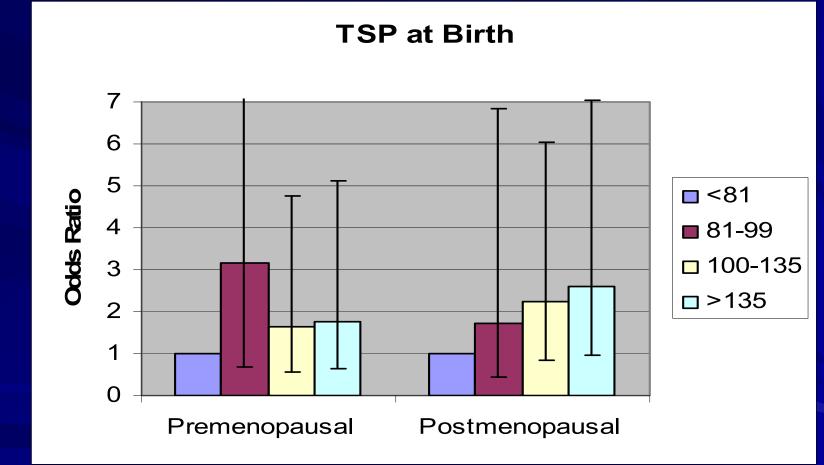
Study Question

Is exposure to high total suspended particulates associated with occurrence of breast cancer?

- 1. Birth
- 2. Menarche
- 3. First birth
- 4. 20 years before diagnosis
- 5. 10 years before diagnosis
- 6. Cumulative exposure



ORs and 95%CI: TSP at Birth Address



Adjusted for age, education, age at menarche, benign breast disease, parity, BMI, family hx. (Cases n=505; Controls n=804)

ORs and 95%CI: TSP at Birth Address- Postmenopausal women

TSP µg/m³	Cases (n=345)	Controls (n=521)	Adjusted OR (95% CI)
<81	6	18	1.00
81-99	7	12	1.7 (0.4-6.8)
100-135	156	238	2.2 (0.8-6.0)
>135	176	253	2.6 (1.0-7.0)
P for trend			0.009

Adjusted for age, education, age at menarche, benign breast disease, parit

Figure 2. Estimated Probability of Being a Case for Postmenopausal Women by Total Suspended Particulate Concentration at Birth Address.

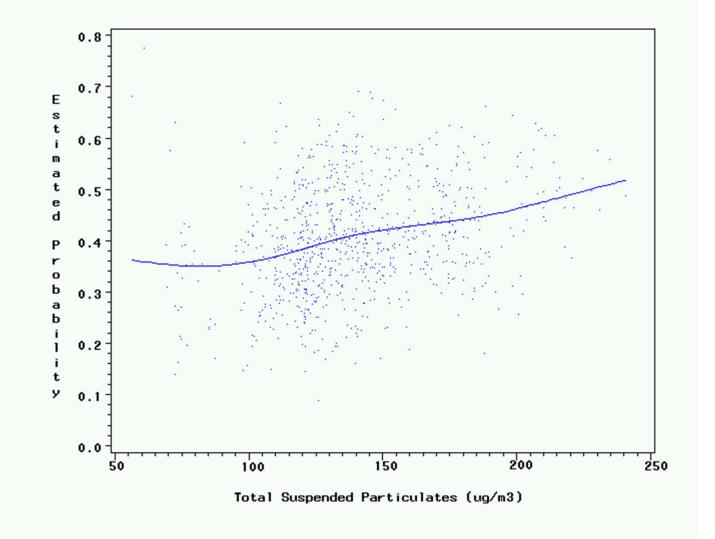
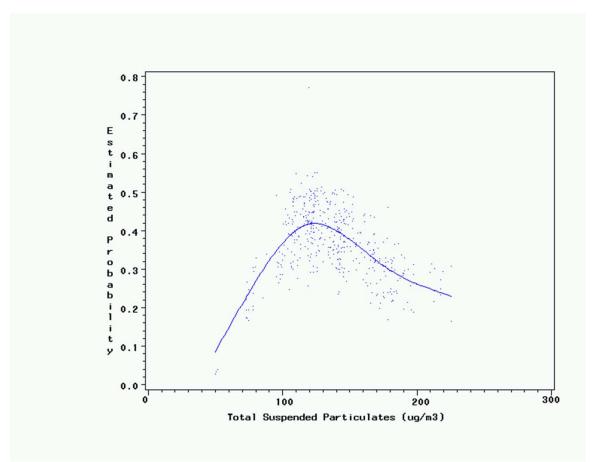


Figure 3. Estimated Probability of Being a Case for Premenopausal Women by Total Suspended Particulate Concentration at Birth Address.



Summary

 Exposure to high TSP concentrations appear to be associated with an increase in risk of breast cancer in postmenopausal women.
 TSP at birth

TSP exposure was not associated with premenopasual breast cancer.

International Journal of Health Geographics

Research

Open Acce

Assessing spatio-temporal variability of risk surfaces using residential history data in a case control study of breast cancer

Daikwon Han^{*1,2}, Peter A Rogerson^{2,3}, Matthew R Bonner¹, Jing Nie¹, John E Vena⁴, Paola Muti¹, Maurizio Trevisan¹ and Jo L Freudenheim¹

Address: ¹Department of Social and Preventive Medicine, University at Buffalo, Buffalo, NY 14214 USA, ²Department of Geography and National Center for Geographic Information and Analysis, University at Buffalo, Buffalo, NY 14261 USA, ³Department of Biostatistics, University at Buffalo, Buffalo, NY 14214 USA and ⁴Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208 USA

Email: Daikwon Han* - dhan@buffalo.edu; Peter A Rogerson - rogerson@buffalo.edu; Matthew R Bonner - bonnerm@mail.nih.gov; Jing Nie - jingnie@buffalo.edu; John E Vena - jvena@gwm.sc.edu; Paola Muti - muti@buffalo.edu; Maurizio Trevisan - trevisan@buffalo.edu; Jo L Freudenheim - jfreuden@buffalo.edu

* Corresponding author

Published: 12 April 2005

International Journal of Health Geographics 2005, 4:9 doi:10.1186/1476-072X-4-9

This article is available from: http://www.ij-healthgeographics.com/content/4/1/9

Received: 28 February 2005 Accepted: 12 April 2005

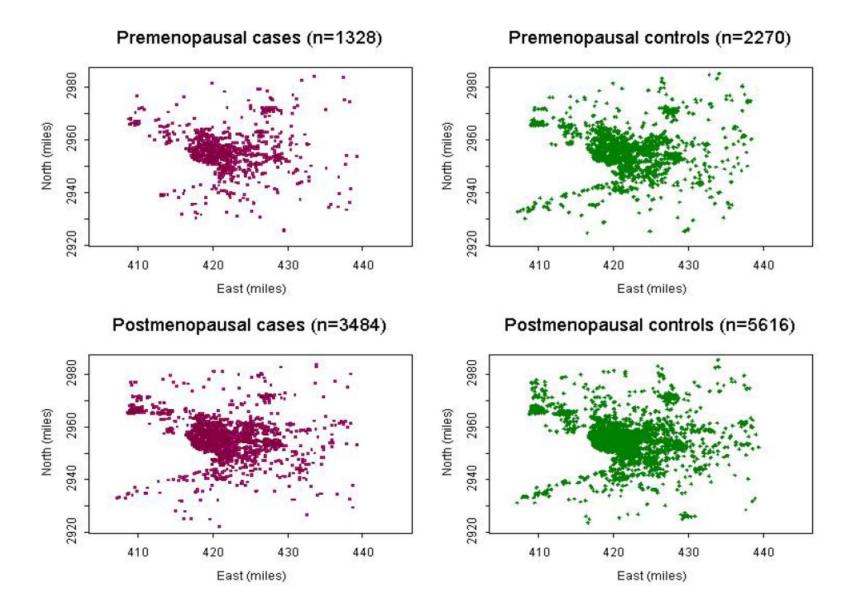


Figure 2

Geographic distribution of breast cancer in Western New York; Shown are all residential locations of breast cancer cases and controls by menopausal status included in the analysis. One dot indicates each residential location. The rectangular region was used as an approximate boundary of the study area instead of actual county boundary in Figure I. East (x) and north (y) coordinates in projected Universal Traverse Mercator (UTM) miles.

Results: A GIS-based exploratory spatial analysis was applied, and spatio-temporal variability of those risk surfaces was evaluated using the standardized difference in density surfaces between cases and controls. The significance of the resulting risk surfaces was tested and reported as *p*-values. These surfaces were compared for premenopausal and postmenopausal women, and were obtained for each decade, from the 1940s to 1990s. We found strong evidence of clustering of lifetime residence for premenopausal women (for cases relative to controls), and a less strong suggestion of such clustering for postmenopausal women, and identified a substantial degree of temporal variability of the risk surfaces.

Conclusion: We were able to pinpoint geographic areas with higher risk through exploratory spatial analyses, and to assess temporal variability of the risk surfaces, thus providing a working hypothesis on breast cancer and environmental exposures. Geographic areas with higher case densities need further epidemiologic investigation for potential relationships between lifetime environmental exposures and breast cancer risk. Examination of lifetime residential history provided additional information on geographic areas associated with higher risk; limiting exploration of chronic disease clustering to current residence may neglect important relationships between location and disease.

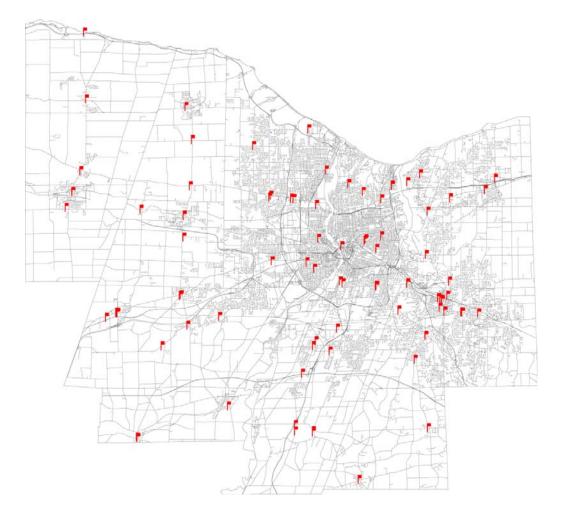
Case-Control Study of the Effects of Trihalomethanes on Urinary Bladder Cancer Risk

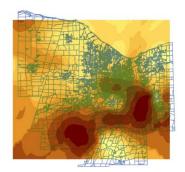
Gerald E. Bove Jr., PhD; Peter A. Rogerson, PhD; John E. Vena, PhD

ABSTRACT. In this research, the authors examined the relation between the estimated concentrations in drinking water of disinfectant byproduct (DBP) trihalomethanes (THMs) and the risk for urinary bladder cancer in a case-control study of 567 white men aged 35 to 90 years, in western New York State. They used logistic regression to estimate odds ratios and to assess the effects of THM consumption on cancer risk. Higher levels of consumption of THMs led to increased risk for cancer of the urinary bladder (total 551, a composite measure of THMs based upon method 551 developed by the US Envirnmental Protection Agency: OR = 2.34; 95% CI = 1.01-3.66). Results were most significant for bromoform (OR = 3.05; 95% CI = 1.51-5.69), and risk was highest (OR = 5.85; 95% CI = 1.93-17.46) for those who consumed the greatest amount of water at points within the distribution system with the oldest postdisinfected tap water.

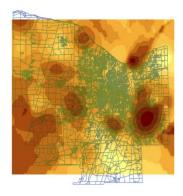
KEYWORDS: cancer risk, DBPs, drinking water, THMs, urinary bladder cancer

Locations of THM sample sites used in kriging

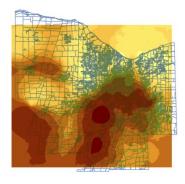




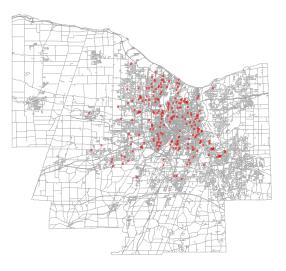
bromodichloromethane



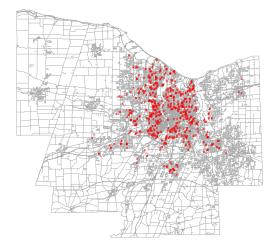
Chloroform



Total 551



Urinary bladder cases



Urinary bladder controls

Bladder Cancer

Higher levels of consumption of THMs led to increased risk for cancer of the urinary bladder (Total 551 (a composite measure of THMs) OR =2.34, 95 % CI = 1.01-3.66).

Results were most significant for Bromoform (OR = 3.05, 95 % CI = 1.51-5.69), and risk was highest (OR = 5.85, 95% CI = 1.93-17.46) for those who consumed the greatest amount of water at points within the distribution system with the oldest postdisinfection tap water.

International Journal of Health Geographics

Research

Open Acces

Case control study of the geographic variability of exposure to disinfectant byproducts and risk for rectal cancer

Gerald E Bove Jr¹, Peter A Rogerson^{*1,2} and John E Vena³

Address: ¹Department of Geography, University at Buffalo, Wilkeson Hall, Buffalo, NY 14261, USA, ²Department of Biostatistics, University at Buffalo, Farber Hall, Buffalo, NY 14261, USA and ³Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 800 Sumter Street, Columbia, SC 29208, USA

Email: Gerald E Bove - gebove@buffalo.edu; Peter A Rogerson* - rogerson@buffalo.edu; John E Vena - jvena@gwm.sc.edu * Corresponding author

Published: 29 May 2007

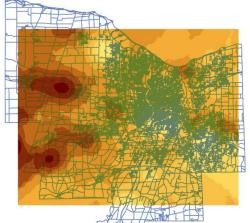
International Journal of Health Geographics 2007, 6:18 doi:10.1186/1476-072X-6-18

This article is available from: http://www.ij-healthgeographics.com/content/6/1/18

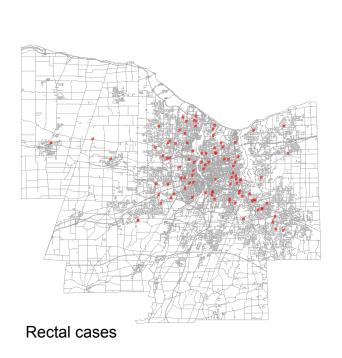
© 2007 Bove et al; licensee BioMed Central Ltd.

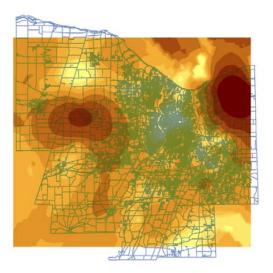
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 15 February 2007 Accepted: 29 May 2007

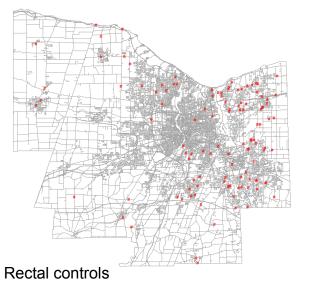


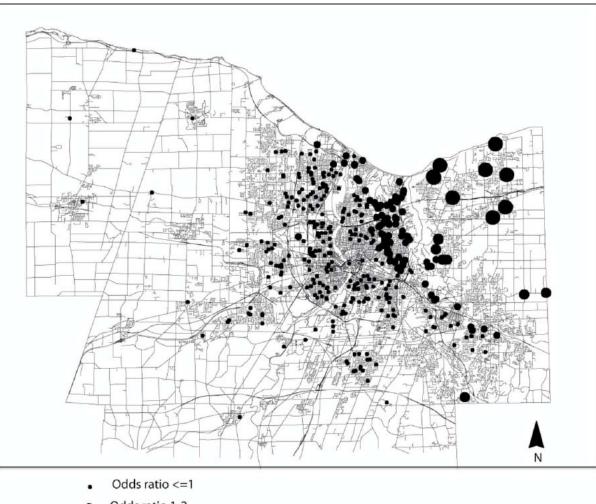
Chlorodibromomethane





Bromoform





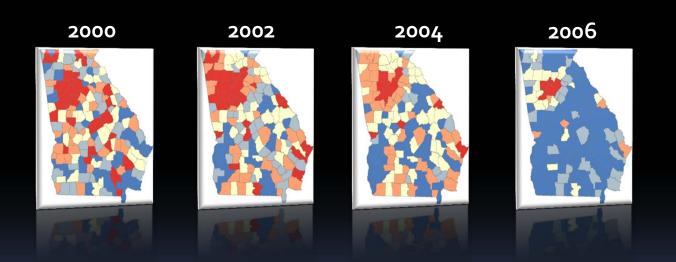
- Odds ratio 1-2
- Odds ratio 2-3
- Odds ratio 3-8

Figure 3

Individual odds ratios for rectal cancer risk for exposure to the THM bromoform. Note: Dependent variable determined as total daily ingestion of bromoform (ug/l) given as daily tap water intake (ug/l) and total bromoform contents of tap water (ug/l). Adjusted via assigning "average" values for covariates

- Results: Trihalomethane levels varied spatially within the county; increasing levels of the component bromoform (measured in ug/day) did correspond with an increase in odds ratios (OR = 1.85; 95% CI = 1.25 – 2.74) for rectal cancer.
- The highest quartiles of estimated consumption of bromoform (1.69–15.43 ug/day) led to increased risk for rectal cancer (OR = 2.32; 95% CI = 1.22–4.39).
- Two other THMs were marginally associated with an increase in risk chlorodibromomethane (OR = 1.78, 95% CI = 1.00–3.19) and bromodichloromethane (OR = 1.15; 95% CI =1.00–1.32).
- **Conclusion:** Levels of THMs in the water distribution system exhibited spatial variation that was partially due to variation in water age. We also observed a geographic pattern of increased risk of rectal cancer in areas with the highest levels of bromoform in the county.

Hierarchical Bayesian modeling of the spatio-temporal patterns of lung cancer incidence risk in Georgia, U.S. 2000-2007



Ping Yin Department of Geography University of Georgia

Methodology

Results

Conclusions

• Study Purposes:

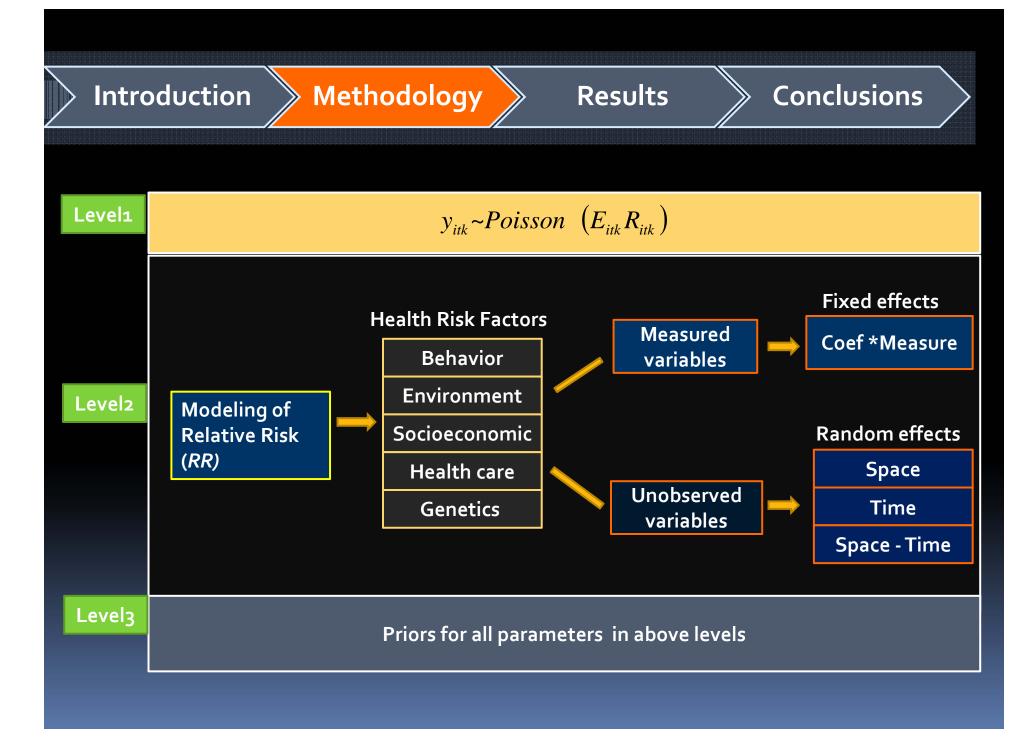
- Obtain reliable spatio-temporal pattern of lung cancer incidence risk in Georgia at small scales
- Understand the difference in the effects of socioeconomic status (SES) on the risk of each population subgroup

• Study Design:

- Time period: 2000 2007 (2-year analytical unit)
- Population strata:

Race (white and black); Sex: male and female

 Data: Georgia Comprehensive Cancer Registry (GCCR) and census data



Methodology

Results

Shared

temporal

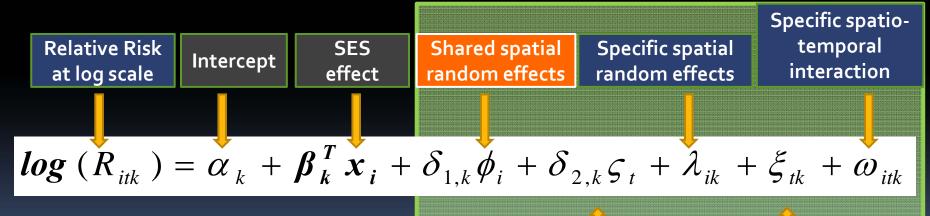
random effects

Conclusions

- Model Selection
 - Compare 5 joint models and 2 separate models
 - Deviance Information Criterion (DIC)

Autocorrelation is considered in the priors for all spatial and temporal random effects

• Final Model : *Joint mapping*



Tract index: *i*=1, 2, ...1618; Time period index: t=1, 2, 3, 4; Population group index: k=1, 2, 3, 4;

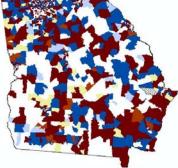
Methodology

Results

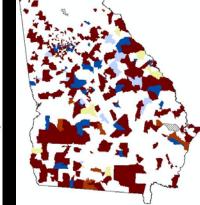
Conclusions

Standardized Incidence Rates (SIR)2000-2001

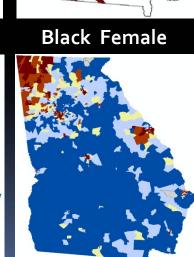
SIR= # Observed cases/ # Expected cases

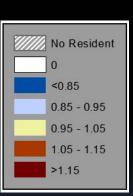


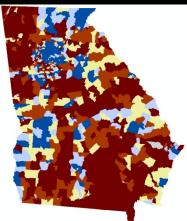
White Female



Black Male

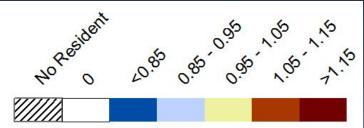






Relative Risks (RR) from Modeling 2000-2001

Methodology Introduction Conclusions Results Relative Risk in 2000-2001 White Female **Black Female** White Male **Black Male**



Methodology

Results

Conclusions

Frequency of Elevated Relative Risks for Each Tract during 2000-2007



Methodology

Conclusions

- Bayesian modeling with shared components makes smooth risk maps by borrowing strengths from neighboring regions and time periods, as well as other population groups.
- Northwest Georgia has stably high elevated lung cancer incidence relative risk for all races/sexes over 2000-2007.
- The SES effect on lung cancer incidence relative risk has a larger gradient in males, especially white males.

Introduction Methodology Results Conclusions

- Smoking data (if available) are expected to improve the modeling.
- SES is assumed static in this research and the long latency of cancers makes the SES 20 years prior to the death may be important.
- Estimation of population at risk could cause errors in the modeling.

Wagner SE, Hurley DB, Hebert JR, McNamara C, Bayakly AR, Vena JE. Cancer mortality-to-incidence ratios in Georgia: describing racial cancer disparities and potential geographical determinants *Cancer*

CANCER MORTALITY-TO-INCIDENCE RATIOS IN GEORGIA

The Mortality-to-Incidence Ratio

• Mortality-to-incidence ratio (MIR)

MIR = (age-adjusted mortality cancer rate)

(age-adjusted incidence cancer rate)

- AKA
 - Fatality ratio
 - Fatality, given incidence
 - 1/survival, given incidence

- Racial disparities in cancer outcomes are large
 - Mortality
 - US: Blacks 25% higher mortality than other (all cancers)
 - Disparities are very large
 - Blacks have more aggressive tumors
 - Incidence
 - Usually higher in Blacks, but not always
 - Breast cancer
 - Disparities are present, but not as large

Methods

- Cancer incidence and mortality data by health district, 2003-2007
 - All sites combined, lung & bronchus, colorectal, female breast, oral, cervical, prostate
- Population data: NCHS bridged population estimates
- MIRs and 95% CI's generated by site, race, sex
- MIRs were mapped & compared to geographic health factors (County Health Rankings)

Health Factors

- Health Behaviors
 - Tobacco use; diet & exercise; alcohol use; unsafe sex
- Clinical Care
 - Access to care; quality of care
- Socioeconomic Factors
 - Education; employment; income; family & social support; community safety
- Physical Environment
 - Environmental quality; built environment

Health Factor Analysis

- County-level Z-scores averaged by health district
 - Positive Z-score: "greater risk" for worse health outcomes than average GA counties
 - Negative Z-score: "lower risk" for worse health outcomes than average GA counties
- Mapped by health district
- Correlation analysis between Z-scores and MIRs by health district

Results

- 186,419 incidence cancers (all sites)
- 71,533 cancer deaths (all sites)

Table 1. Georgia Mortality-to-Incidence Ratios and 95% Confidence Intervals for All Cancer Sites Combined and For Specified Cancer Sites by Race and Sex, 2003-2007

	Blacks			Whites		
Cancer Site: Sex Subgroup	MIR	95% CI	MIR	95% CI	Black:White Ratio ^a	
All sites combined				_		
Overall ^b	0.450	0.442, 0.459	0.401	0.396, 0.405	1.122	
Women ^b	0.443	0.432. 0.455	0.373	0.368, 0.379	1.188	
Men ^b	0.471	0.458, 0.483	0.432	0.426, 0.439	1.090	
Ratio of men to women	1.063	-	1.158	-	-	
Female breast						
Women ^b	0.255	0.242, 0.269	0.181	0.175, 0.188	1.408	
Cervix						
Women ^b	0.423	0.362, 0.492	0.279	0.247, 0.315	1.516	
Colon and rectum						
Overall ^b	0.407	0.386, 0.430	0.343	0.331, 0.355	1.187	
Women ^b	0.397	0.369, 0.427	0.339	0.322, 0.356	1.171	
Men ^b	0.426	0.391, 0.463	0.352	0.335, 0.370	1.210	
Ratio of men to women	1.073	-	1.038	-	-	
Lung and bronchus						
Overall	0.793	0.761, 0.826	0.770	0.754, 0.785	1.029	
Women	0.749	0.701, 0.799	0.721	0.699, 0.744	1.038	
Men	0.827	0.783, 0.873	0.812	0.790, 0.834	1.018	
Ratio of men to women	1.104	-	1.126	-	-	
Oral cavity						
Overall ^b	0.333	0.291, 0.380	0.213	0.197, 0.230	1.563	
Women	0.225	0.172, 0.292	0.215	0.187, 0.248	1.047	
Men ^b	0.398	0.337, 0.469	0.220	0.199, 0.243	1.809	
Ratio of men to women	1.769	-	1.023	-	-	
Prostate						
Men ^b	0.242	0.228, 0.256	0.156	0.149, 0.163	1.551	

Abbreviations: CI, confidence interval; MIR, mortality-to-incidence ratio.

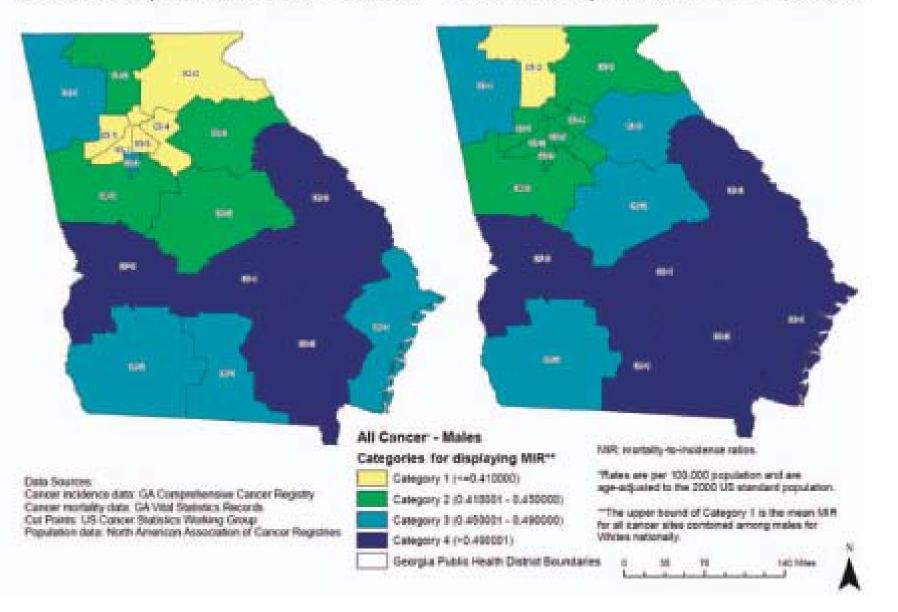
^a The black:white ratio is the MIR for blacks divided by the MIR for whites.

Mapping Display Cutoff Points

- Category 1: mean MIR for whites nationally
- Category 2: upper bound 10% higher than upper bound of Category 1
- Category 3: upper bound 20% higher than upper bound of Category 1
- Category 4: upper bound >20% higher than upper bound of Category 1

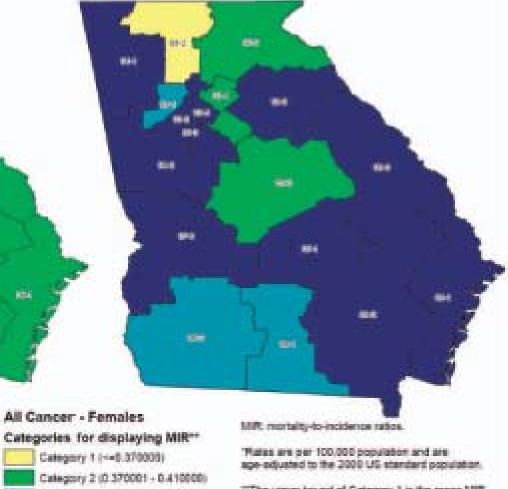
A

Age-Adjusted* All Cancer Sites Mortality-to-Incidence Ratios for White Males Compared to National Mean MIR**, 2003-2007 Age-Adjusted* All Cancer Sites Mortality-to-Incidence Ratios for Black Males Compared to National Mean MIR**, 2003-2007



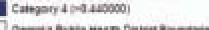
Age-Adjusted* All Cancer Sites Mortality-to-Incidence Ratios for White Females Compared to National Mean MIR**, 2003-2007

Age-Adjusted* All Cancer Sites Mortality-to-Incidence Ratios for Black Females Compared to National Mean MIR**, 2003-2007



Data Sources

Cancer incidence data: GA Comprohensive Cancer Registry Concer mortality data: GA Vital Statistics Records Cut Points US Canoer Statistics Working Group Papulation data. North American Association of Cancer Registries.



Category 3 (0.410001 - 0.440000)

. Georgi a Public Health District Boundaries

"The upper bound of Category 1 is the mean NRR. for all cancer sites combined among females for Whites nationally.

540 Kiles 36. 26

В

Age-Adjusted* Female Breast Cancer Mortality-to-Incidence Ratios for Whites Compared to National Mean MIR**, 2003-2007 Age-Adjusted* Female Breast Cancer Mortality-to-Incidence Ratios for Blacks Compared to National Mean MIR**, 2003-2007

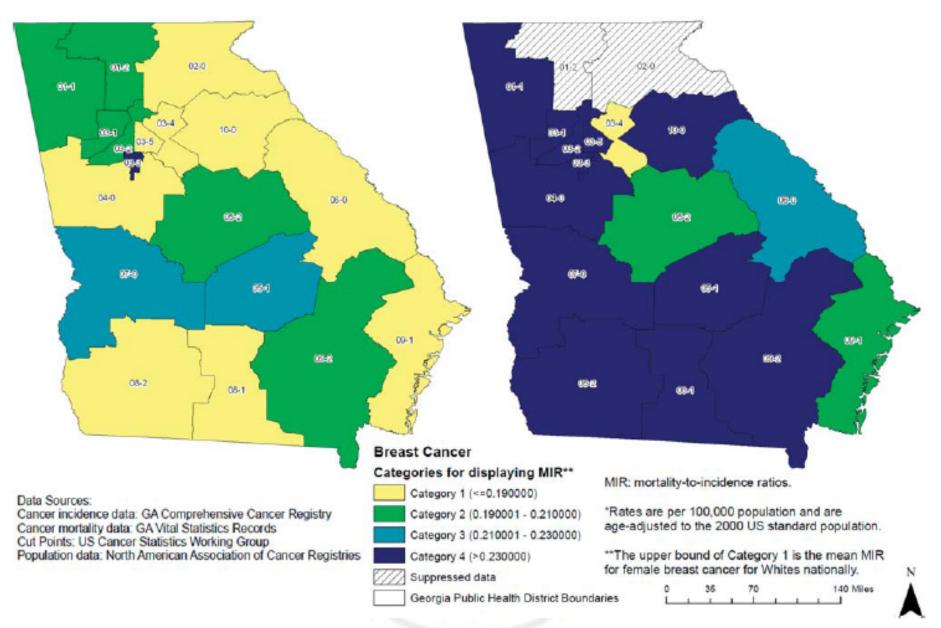
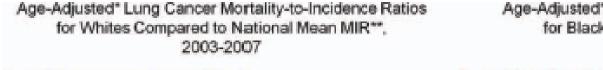


Figure 2. Mortality-to-incidence ratios are illustrated by Georgia public health district for female breast cancer.



Age-Adjusted* Lung Cancer Mortality-to-Incidence Ratios for Blacks Compared to National Mean MIR**, 2003-2007

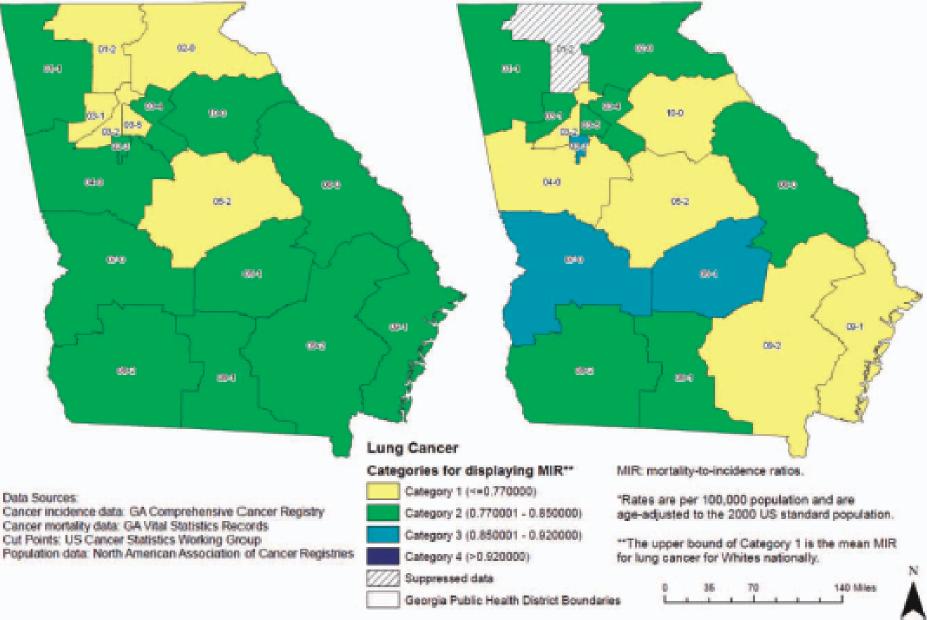
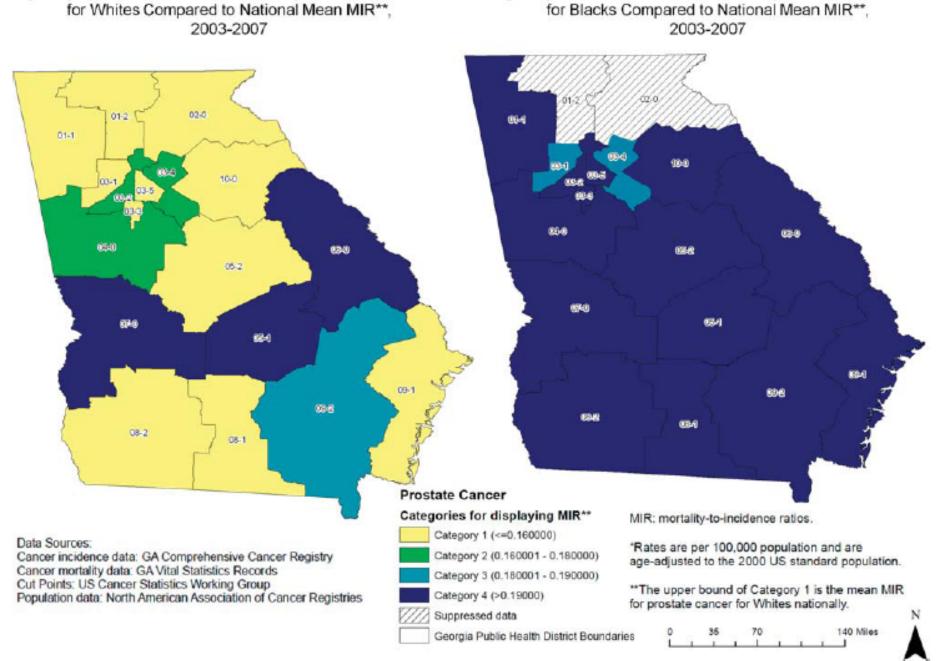


Figure 5. Mortality-to-incidence ratios are illustrated by Georgia public health district for lung cancer.



Age-Adjusted* Prostate Cancer Mortality-to-Incidence Ratios

Age-Adjusted* Prostate Cancer Mortality-to-Incidence Ratios

Figure 7. Mortality-to-incidence ratios are illustrated by Georgia public health district for prostate cancer.

Table 2. Correlation Coefficients Between Health District Health Factor Groupings and Average Health District Mortality-to-Incidence Ratios for All Cancer Sites Combined and for Specified Cancer Sites by Race and Sex, 2003-2007

		Blacks			Whites	
Cancer Site: Sex Subgroup	No.	ρ	P ^a	No.	ρ	Р
Health behavior						
All sites combined						
Overall	18	0.463	0.03	18	0.860	< 0.0001
Women	18	0.287	0.13	18	0.713	<.0001
Mon	18	0.548	0.01	18	0.864	<.0001
Female breast						
Women	16	0.010	0.49	18	0.151	0.28
Cervix						
Women	5	0.443	0.23	7	-0.058	0.55
Colon and rectum						
Overall	17	-0.224	0.81	18	0.311	0.11
Women	15	-0.398	0.93	18	0.082	0.38
Mon	14	0.060	0.42	18	0.311	0.11
Lung and bronchus						
Overall	17	0.394	0.06	18	0.708	<.0001
Women	16	-0.282	0.86	18	0.259	0.15
Men	17	-0.156	0.73	18	0.805	<.0001
Oral cavity						
Overall	7	0.423	0.17	16	0.326	0.11
Women	0	-	-	5	0.074	0.46
Mon	4	0.709	0.15	14	0.198	0.25
Prostate						
Mon	16	0.477	0.03	18	0.251	0.16

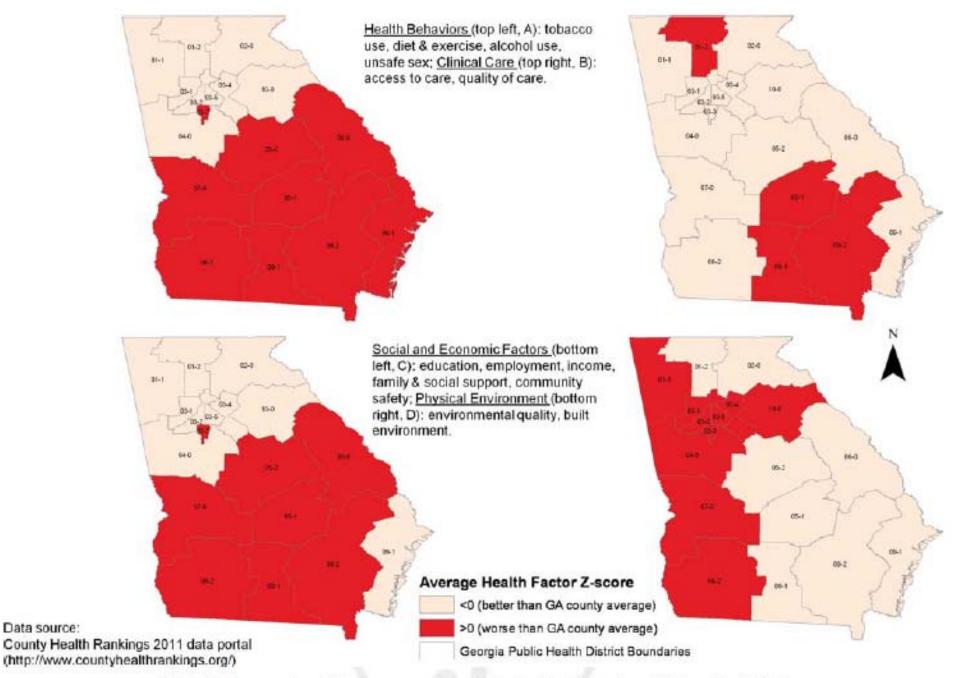


Figure 8. Average health factor scores are illustrated by Georgia public health district.

Discussion

- Blacks had more fatal cancers than whites for all cancer sites
- Higher MIRs were observed among blacks in SC compared with blacks in GA

Except cervical cancer

 Worst health outcomes in West and East Central health districts

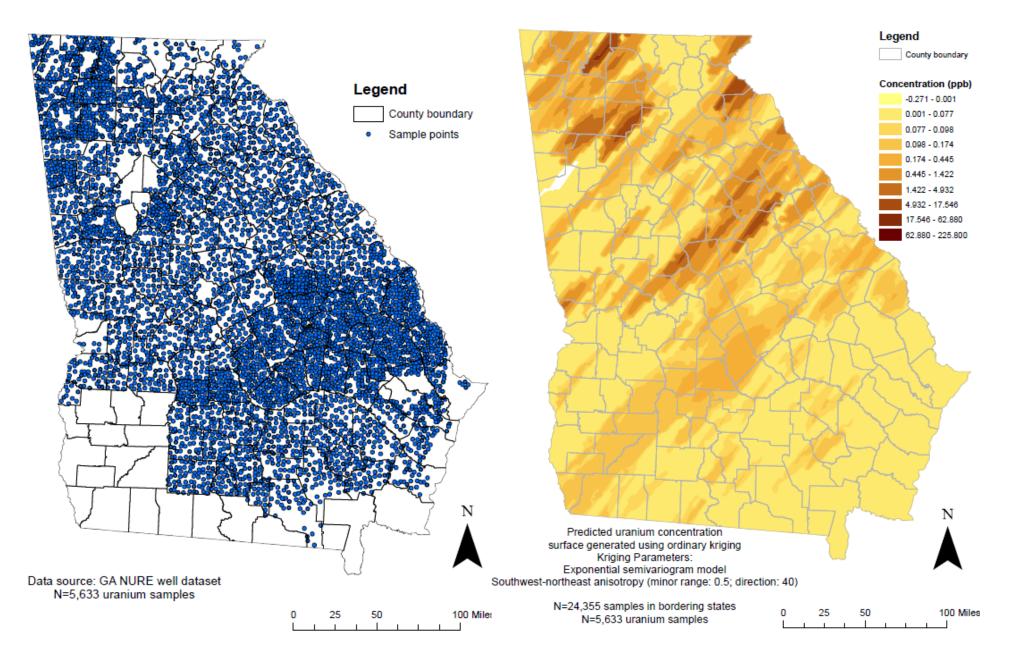
Strengths/Limitations

- County Health Rankings system
- Use of health districts
- MIR
 - Efficient
 - Avoids survival studies
- GCCR data

Summary

- Larger MIRs for blacks
 - Especially prostate, cervical, oral cancer in men
- More fatal cancers in West and East Central Georgia
- May be related to health behavior, clinical care, social/economic factors

Uranium Sample Points



Predicted Well Uranium Concentrations

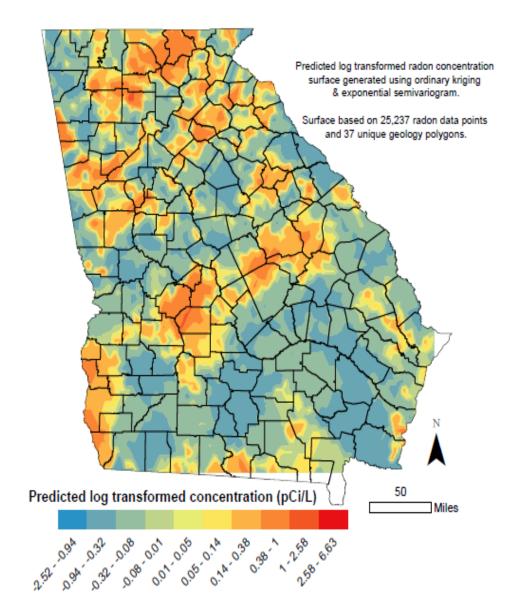


Figure 3. Predicted radon concentration surface.

Table 1. Adjusted and stratified relationship of predicted log-transformed radon concentrations [log(pCi/L)] by county and cancer incidence (specific cancer site vs. cervical cancer control).

	Unadjusted		Adjusted*	
Cancer Site	Odds Ratio	95% CI	Odds Ratio	95% CI
Lung & bronchus (n=34,355)	1.02	0.93, 1.13	0.97	0.86, 1.08
Kidney & renal pelvis (n=6,539)	1.04	0.94, 1.16	0.87	0.76, 1.01
Female breast (n=33,540)	1.21	1.10, 1.34	1.07	0.97, 1.19
Leukemia (n=10,195)	1.11	0.97, 1.23	0.91	0.68, 1.24
Colorectal (n=23,077)	1.03	0.93, 1.14	0.98	0.89, 1.12
Urinary bladder [†] (n=8,228)	1.20	1.07, 1.33	0.99	0.83, 1.19

Bold values refer to a statistically significant association based on confidence intervals.

CI: confidence interval

Cervical cancer controls N=2,323.

*Adjusted models control for: race, gender (except breast), tumor stage, county-level median household income.

† Urinary bladder cancer includes in situ cases.

Cancer Data: Georgia Comprehensive Cancer Registry

Point locations of subjects with seven cancer types:

- 1. Bladder
- 2. Breast
- 3. Colorectal
- 4. Kidney
- 5. Leukemia
- 6. Lung
- 7. Other

Individual-level covariates:

- Age
 - Gender
- Race (White vs. Non-White)

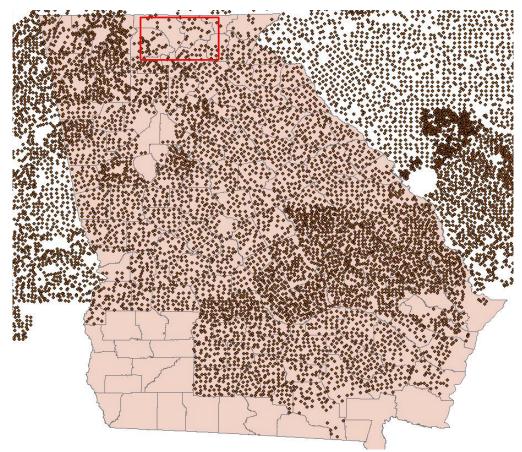
Radionuclide data

Geologic Data

Cancer Data: Georgia Comprehensive Cancer Registry

Radionuclide data

Groundwater Uranium. National Uranium Resource Evaluation Program

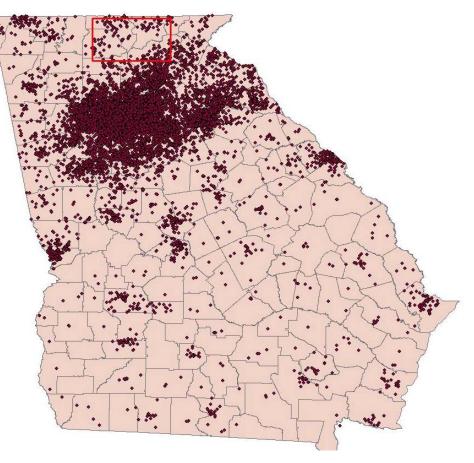


Household Radon. University of Georgia Cooperative Extension Geologic Data

Cancer Data: Georgia Comprehensive Cancer Registry

Radionuclide data

Groundwater Uranium. National Uranium Resource Evaluation Program *Household Radon.* University of Georgia Cooperative Extension



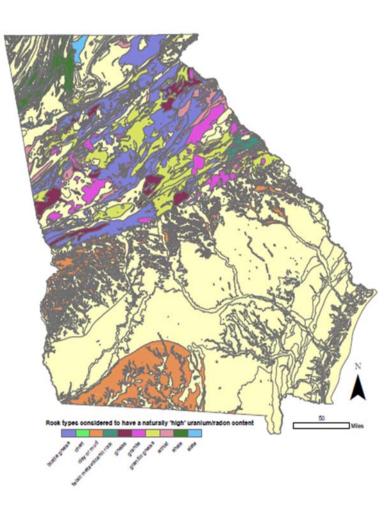
Geologic Data

Cancer Data: Georgia Comprehensive Cancer Registry

Radionuclide data

Groundwater Uranium. National Uranium Resource Evaluation Program *Household Radon.* University of Georgia Cooperative Extension

Geologic Data



- I. Stage 1. Geostatistical model for radionuclide levels.
- **II.** Stage 2. Logistic regression model for cancer data.
- III. Stage 3. Prior Model

I. Stage 1. Geostatistical model for radionuclide levels.

Radionuclide level Z(s) at location s is described by the spatial regression model

$$\log Z(s) = \mu_i + \varepsilon(s); \ s \in A_i,$$

where A_i is the set of locations in rock type *i*, μ_i is the mean radionuclide level in rock type *i*, $\varepsilon(s)$ is a zero-mean Gaussian random field with exponential covariance function

$$C(r;\theta) = \begin{cases} \sigma^2(1-d_0)\exp\{-\alpha r\}; & r > 0\\ \sigma^2; & r = 1 \end{cases}$$

and r is great circle distance.

- II. Stage 2. Logistic regression model for cancer data.
- III. Stage 3. Prior Model

- I. Stage 1. Geostatistical model for radionuclide levels.
- **II.** Stage 2. Logistic regression model for cancer data.

Conditional on the realization of the radionuclide random field:

• Controls are sampled from a point process with baseline intensity

$\lambda_0(u)$

• Cancer cases are sampled from a point process with intensity $\lambda_1(u) = \lambda_0(u) \exp\{\beta' x(u)\}$

where the vector x(u) includes log radionuclide concentration, and confounders such as age, race, etc.

If both point processes are Poisson then the cancer indicators $Y(u_i)$ for event at location u_i ; $i = 1, \dots, m$ are independently sampled from a Bernoulli distribution with probabilities $q(u_i)$ described by the logistic regression model

$$\log \frac{p(u_i)}{1-p(u_i)} = \beta' x(u)$$

III. Stage 3. Prior Model

- I. Stage 1. Geostatistical model for radionuclide levels.
- **II.** Stage 2. Logistic regression model for cancer data.
- III. Stage 3. Prior Model

Geostatistical Model for Radionuclide Exposure

$$\log Z(s) = \mu_i + \varepsilon(s); \ s \in A_i$$
$$C(r;\theta) = \sigma^2(1-d_0)\exp\{-\alpha r\}; \ r > 0$$

• Mean log radionuclide levels μ_i

$$\pi(\mu_i) \propto 1$$

• Variance σ^2

$$\pi(\sigma^2) \propto 1/\sigma^2$$

• Nugget effect

$$d_0 \sim U(0,1)$$

• Range parameter

$$e^{\alpha} \sim U(0,1)$$

Handcock and Stein (1993) *Technometrics* **35**, 403-410.

- I. Stage 1. Geostatistical model for radionuclide levels.
- **II.** Stage 2. Logistic regression model for cancer data.
- III. Stage 3. Prior Model

Logistic regression model for cancer indicator

$$\log \frac{p(u_i)}{1-p(u_i)} = \beta' x(u)$$

Regression coefficients

$$\beta \sim N(0,\tau^2 I),$$

Inferential Issues

Spatial Misalignment: Sites s_1, \dots, s_n at which radionulide levels are not the same as the sites u_1, \dots, u_m at which cases and controls are observed.

Some Examples:

- Zhu, Carlin and Gelfand (2003; *Environmetrics*): Effect of ozone exposure on pediatric asthma in zip codes of Atlanta.
- Greco, Lawson, Cocchi and Temples (2005; *Environmental and Ecological Statistics*): Effect of uranium exposure on cancer incidence in zip codes of northern South Carolina.
- Fuentes, Song, Ghosh, Holland and Davis (2006; *Biometrics*): Effect of PM_{2.5} on deaths due to natural and cardiovascular disease in U.S. counties.
 - Smith, Zhang and Field (2007; *Statistics in Medicine*): Effect of radon exposure on leukemia in Iowa counties.

In these studies:

- **1.** Disease counts are aggregated within regions such as zip codes or counties
- **2.** Exposure measured at point locations.

Issue: Ecologic Bias

Bayesian Approaches

Notation:

Observed Radionuclide Data $Z_0 = (Z(s_1), \cdots Z(s_n))'$ Unobserved Radionuclide Data at Case/Control Sites $Z_1 = (Z(u_1), \cdots Z(u_m))'$ Cancer Indicator at Case/Control Sites $Y = (Y(u_1), \cdots Y(u_m))'$ Radionuclide Parameters $\theta = (\mu, \sigma^2, d_0, \alpha)$ Cancer Parameters β

Marginal distribution of observed data:

$$p(Y,Z_0|\theta,\beta) = \int p(Y|Z_1,\beta)p(Z_1|Z_0;\theta,\alpha)p(Z_0|\theta,\alpha)dZ_1$$

Data Augmentation (Chib and Greewood 1998; Weir and Pettitt 1999, 2000; De Oliveira 2000)

Instead of drawing samples from the posterior distribution

$$p(\theta,\beta|Y,Z_0) \propto p(Y,Z_0|\theta,\beta)\pi(\theta,\beta)$$

samples are drawn from

 $p(\theta, \beta, Z_1|Y, Z_0) \propto p(Y|Z_1, \beta)p(Z_1|Z_0; \theta)p(Z_0|\theta)\pi(\theta, \beta)$

Alternative Approaches:

• *Fully Bayesian Approach*: Sample from the posterior distribution

 $p(\theta, \beta, Z_1|Y, Z_0) \propto p(Y|Z_1, \beta)p(Z_1|Z_0; \theta)p(Z_0|\theta)\pi(\theta, \beta)$

Two-Stage Bayesian Approach: (Gryparis et al. 2009; Lee and Shadick 2010)

Stage 1. Sample θ from the posterior of the exposure model

 $p(\theta|Z_0) \propto p(Z_0|\theta)\pi(\theta)$

and sample the unobserved Z_1 from the posterior predictive distribution

 $p(Z_1|Z_0;\theta)$

Stage 2. Sample β from the posterior of the health-effects model

 $p(\beta, Z_1|Y, Z_0, \theta) \propto p(Y|Z_1, \beta)p(Z_1|Z_0; \theta)\pi(\beta)$

where the posterior predictive distribution $p(Z_1|Z_0;\theta)$ is treated as the prior for Z_1 in the health-effects model.

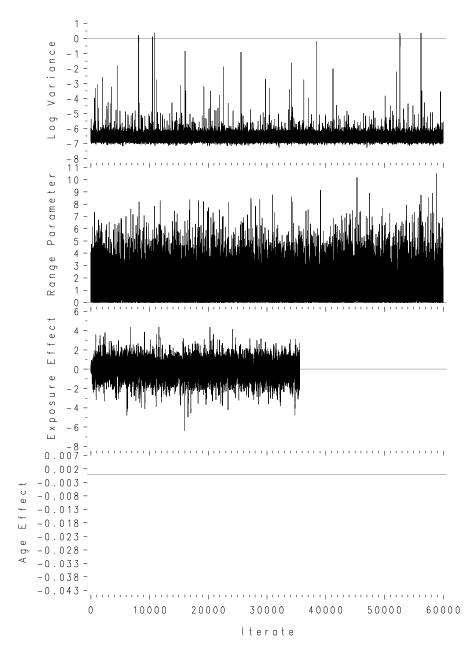
Consider two versions of the two-stage Bayesian approach:

- **1**. No feedback between health outcome and exposure estimates.
- 2. Yes, there is feedback between health outcome and exposure estimates.

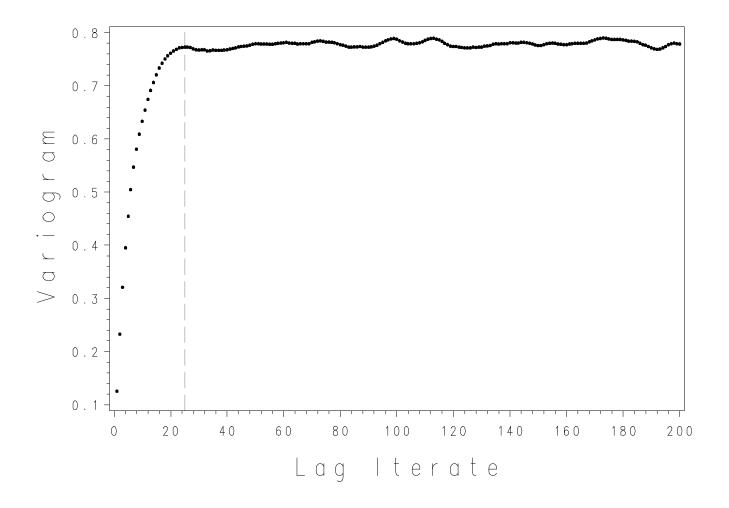
Breast Cancer Data: Treat remaining cancer types as a control group. Predictors:

Exposure Model	Cancer Indicator		
4 Rock Types	Uranium Exposure (well water)		
	Age		

Iterates of MCMC Algorithm for Breast Cancer



Variogram against lag iterate for exposure effect.



Adjusted odds ratios for the effects of uranium exposure for two-stage Bayesian inference with and without feedback between pattern of cancer cases and predicted uranium exposures.

Cancer	No Feedback	Feedback	
Bladder	0.02 (0.00, 1.08)	0.01 (0.00, 1.05)	
Breast	1.38 (0.14, 4.65)	1.36 (0.16, 5.06)	
Colorectal	2.17 (0.40, 12.95)	2.32 (0.50, 13.69)	
Kidney	0.10 (0.00, 4.08)	0.08 (0.00, 7.42)	
Lung	0.84 (0.18, 3.13)	0.84 (0.14, 3.15)	

Additional Challenges

- Left censoring of Radon levels below minum detection limits.
 Solution: Method of De Oliviera (2005; Journal of Computational and Graphical Statistics).
- Large number of observations of radon and uranium in the full Georgia data set. *Solutions*:
 - Predictive process model (Finley, Sang, Banerjee and Gelfand 2009; Computational Statistics and Data Analysis)
 - Fixed rank kriging (Cressie and Johannson 2008; *JRSSB*).