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Exposure observed at 32
monitor locations
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Purpose of Study: What Is the association between
health outcomes and environmental exposure?

Health outcomes observed on
different geographical units
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4 Regression Relating Health Outcome to
Environmental Exposure

Consider the simple linear regression
y(Su) — /Bo +ﬂ1X(Su) +e(su)
where e~ N(0,X,) and

X(s) ~ N(C(s)§, X,) VseD R’

Note:
y(s,) is observed health outcome
X(S,) is unobserved exposure
X(S,) Is observed exposure
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Classical Measurement Error

Suppose that a model is used to predict exposure at the
points of observed health outcomes. Further assume
that the model provides unbiased predictions with
normally distributed measurement error; that is,

X(5,) = X(,)+ W

where w ~ N(0,51). This is classical measurement

error. The predicted exposure is more variable than
the true exposure.




~Ignoring Prediction Error: Model and
Regress

Ordinary Least Squares:
ﬁM — (X’X)_l X’y
where N
X — (1n><1 X(S))
Pyis
> Biased estimator of f3

> Uncertainty associated with predicting exposure results in standard
errors being under-estimated




Classical Measurement Error

True Population Regression Line

Estimated Population Regression Line
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Berkson Error

Suppose kriging is used to predict exposure at the points of
observed health outcomes.

X(Su) | X(SO) - N(uk (Su)’ Z‘k (Su ))

-1
1y (Su) — C(Su )g o 2uozoo (X(So) o C(So)g)
-1
2k — 2“uu - EUOZOOZOU
where § is a known mean parameters of x
) IS the known var-cov matrix among unobserved locations

) I IS the known var-cov matrix among observed locations

) I IS the known var-cov matrix among observed and
unobserved locations
kThat is, X(S,)|[X(Sy)=p.(s,)+Vv, v~N(OZX)
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Berkson Error

Using the predicted exposure, X(s,)=p,(S,), resultsin a
smoother surface than the true exposure X(s,); that is,

X(S,)=n.(S,)+V=X(s,)+V
Thus,
Y ) IX(S,) = Boloa + Bilpy (s,) +V) +e
= Poloa + B (S,) + (BV +€)
= foloa + B () +m

where = S,v+e. The error v assoclated with the
prediction of exposure is known as Berkson error.
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~ Ignoring Prediction Error: Krige and

Regress
Ordinary Least Squares:
B=(XX)"Xy
where
X=1h m(s))
Bis

> Unbiased estimator of 3

> Uncertainty associated with predicting exposure results in standard
errors being under-estimated

How does one account for the additional uncertainty induced
by using kriging predictions in linear regression models?
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Prior Work

> Hierarchical Bayesian Models

Mugglin and Carlin, 1998; Mugglin, et al. 1999;
Gelfand, et al. 2001; Zhu, et al. 2003

> Adjusted Krige and Regress Method
Madsen, et al. 2009

> Bootstrap Methods
Szpiro, et al. 2010

Comparison of Existing Methods
Gryparis, et al. 2009 and Lopiano, et al. 2010
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Comparison of Existing Methods

Gryparis, et al. 2009 and Lopiano, et al. 2010

Conclusion: Existing frequentist approaches do
not provide unbiased estimates of uncertainty

Goal: Develop an easy to implement frequentist
approach
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Developing an Estimator

Recall: Y(S,)1X(S,) = Bolog + Bl (S,)+M
n= :Blv +€
Note: E[y(s,) | X(S,)] = Bl + Ay (S,)

VIy(s,) [x(s,)]= B, + X,

Thus,

-

y(Su) | X(So) - N(XB — ﬁolnxl +ﬂ1uk (Su)’ Zy — ﬂlzzk +Ze)




4 _ _ R
Developing an Estimator

Y(Su) IX(S,) =~ NOXB = oL + B (8,). Ty = B Xy +X,)

n (S, ) and X, are known

The generalized least squares estimator of p Is the best linear
unbiased estimator:

Bos = (XEX)'XE Y
The variance of this estimator IS

var(Be.s) = (X'E,"X) ™




g An Estimated Generalized Least Squares

(EGLS) Estimator

Assuming 2, = o'l . the challenge is that o* is unknown so
that X, = B°X, +X, is unknown (recall X, is assumed
known)

Let P =X(s,)(X'(s,)X(s,)) " X'(s,). Then
o Y (1 =Py~ trace((1 ~P)(o %))
n—p

] ) . 2
IS an unbiased estimator of o".

Thus, iy = ﬁfmszk +C§I IS an unbiased estimator of 2,

-
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An Estimated Generalized Least Squares

(EGLS) Estimator

The EGLS estimator is
Beors = (X(5,)E,"X(5,)) " X'(5,),'Y(5,)
with variance
var(Bees) = (X'(5,)X,'X(s,))

where

zA:y = ﬂl%OLSZk +Ql
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Iteration Process for Final Estimate
Update i
O - y'(I - P)y —trace((1 - P)(Secs )

n —_
where . ; A
P = X(s,)(X'(5,)Z,X(s,)) " X (5,)Z

and A . A
zy — ﬂl,EGLSZ‘k +Ql,
Update

B EGLS — (X’(Su )i;/lx(su ))_1 X’(Su )i;/ly(su )
and . .
Var(ﬁ EGLS ) — (X’(Su )2;1X(Su ))_l

Iterate (1) and (2) until changes in estimates are sufficiently
small.

™~
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Parameters Assoclated With X

Suppose & and Ty, the mean and covariance parameters,
respectively, associated with X, are unknown.

Then, N
& = (C'(S)X0sC(S0)) "C/(So) EooX (S0

and the estimated variance of X(S,) | X(S,) (the kriging
variance) Is

N

Z—ZZZ

uo~ 00" 0ou

(C(5,) - EyoZy C(8,))(C(54) EqeC(8,)) * (C(5, ) - Eyo i CI5,))'

uo~ 00

Note: No correction Is being made for using the plug-in
L estimators of Ty




Simulation Study

Health outcomes observed on a

Exposure measured at 56

grid

monitor locations




Simulation Study

10,000 Datasets Generated for Each Scenario

Exposure Model
> Mean
- 40
» -73x0.23 Northing —0.00011 Northing?
»>Variance-Covariance

- Exponential covariance structure with a scale of 70 and a
range of 200
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Study Results: Mean Only

True Model: y(s,) =-0.8+0.2x(s,) +e(s,)
where e~ N(0,2.3°1)

Scale | Range | Mean | ltera- _2 Cover-
tions /81

0.199 000212 000210 94 /8
X 20 0.200 0.00215 0.00210 94.67

- 0 0.199 0.00213 0.00210 94.66
- 20 0.200 0.00216 0.00210 94.51

- . - - 0 0.204 0.00242 0.00234 94.68
- - - - 20 0.205 0.00246 0.00244 94.57

X X X X
X X X X

. observed mean of S,

o2 observed variance of J,

52 observed mean of estimated variance of ,81

\Cﬁoverage observed coverage for nominal 95% confidence intervals/




4 N

Study Results: Trend Surface

True Model: y(s,) =-0.8+0.2x(s,) +e(s,)
where e~ N(0,2.3°1)

Scale | Range | Mean | ltera- _2 Cover-
tions /81

0.199 000163 000161 94 49
X 20 0.200 0.00166 0.00162 94.47

- 0 0193 0.001/8 0.00168 92.65
- 20 0.195 0.00180 0.00160 92.97

- - - - 0 0195 0.00192 0.001/5 92.62
- - - - 20 0.197 0.00196 0.00177 92.92

X X X X
X X X X

,31 observed mean of j,
observed variance of f,
§2 observed mean of estimated variance of ,81
\Coverage observed coverage for nominal 95% confidence intervals/




g Study Results: Trend Surface, Modeled as
Constant Mean

True Model: Y(S,) =—-0.8+0.2x(s,) +e(s,)
where € ~ N(0,2.3°1)

Scale | Range | Mean | ltera- —2 Cover-
tions /81

0.205 0.00182 0.00193 95 75
- X X - 20 0.206 0.00185 0.00191 95.58

- . - - 0 0.207 0.00203 0.00209 95.53
- . - - 20 0.208 0.00230 0.00208 95.38

,31 observed mean of /3,
o _observed variance of 5,
s, observed mean of estimated variance of 4,
\Coverage observed coverage for nominal 95% confidence intervals S




Berkson Error and Classical
Measurement Error

When kriging is used to predict environmental exposure
at points at which health outcomes are observed,
Berkson error occurs.

When the kriging parameters are not known, but must be
estimated, classical measurement error iIs introduced

Estimated generalized least squares adjusts for Berkson
error, but what about classical measurement error?
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Accounting for Classical
Measurement Error

Szipiro, et al. (2010) suggested three approaches for
correcting for classical measurement error when
predicting exposure and then using ordinary least
squares to relate health outcomes to environmental
exposure:

- Parametric bootstrap
- Parameter bootstrap
- Partial parametric bootstrap

Can these be extended to generalized least squares?
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Parametric Bootstrap

The steps for the estimation process are as follows.
1. Estimate the exposure model parameters, & and 2
2. Use Hx(Sy)to estimate model parameters BEGLS and E
3. Repeat the steps below tor eachj=1,2, ..., M

(2) Simulate a new set of observations Y (s,) and X, (s ) based on the

models for exposure and health outcomes usmgg Zx : BEGLS , and E .
(b) Estimate new X parameters § and Zx j using X(s,,).
(c) Derlve,ux,l(su) using &.,j : Z‘x,j , and X(s,)

(d) Calculate Peg s 5 ;

4. Calculate the parametric bootstrap standard error

1 M MoA )
O',gEGm |\/| 15 ﬂEGLSlJ jzzllﬂl.j




Parametric Bootstrap

The method is computationally intensive

Estimating ¢ and X, requires nonlinear optimization, and this
IS required for each of the M steps in the parametric
bootstrap.

However, the sampling distributionf(.-) of & and £, can be
estimated without much additional cost.




g Parameter Bootstrap A

The steps for the estimation process are as follows.
1. Estimate the exposure model parameters, g andZX , and their
sampling distribution p(-)
2. Use fiy(S,) to estimate model parameters Peg s and X,

3. Repeat the steps below tor eachj=1,2, ..., M

(a) Simulate a new set of observations Y (s,) and X (S ) based on the

models for exposure and health outcomes usmg}; Ex , BEGLS , and Z .

(b) Sample the parameters g and Z from the probability
distribution defined by p(:,)

(c) Derive 'ux’i(S“) using (’;j, ﬁx,j , and X(s,)
(d) Calculate Pgg s 1]

4. Calculate the parametric bootstrap standard error

. M(ﬂ %ﬁ f
O , .
k ﬂEGLS 1 IVI 1 J_ EGLS l J le 1_] /




Partial Parameter Bootstrap (PPB)

To reduce computations, the PPB was suggested

Instead of estimating & and X, for each bootstrap sample,
the estimates from the data are used.

This ignores the classical measurement error, but accounts
for Berkson error

The EGLS estimator fully accounts for Berkson error so the
PPB Is not considered further
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Study Results: Trend Surface
True Model: y(s,) =-0.8+0. 2x(s )+e(s,) where e ~ N(0,2.3°1)

™~
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OLS & Parameter Bootstrap
EGLS with Iteration

EGLS & Parametric Bootstrap
EGLS & Parameter Bootstrap

,31

%
Sﬂl O

00Serveco
0SEerveco

0SEerveo

mean of /5,

N

variance of £,

mean of estimated variance of ,Bl

0.208
0.208
0.197
0.197

0.197

0.00373
0.00189
0.00196
0.00220

0.00202

0.00265
0.00370
0.00177
0.00206

0.00380

90.70
96.40
92.92
93.33

96.72

Coverage: observed coverage for nominal 95% confidence intervals

-
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Conclusions from Simulation

= Both OLS and EGLS estimators exhibit some bias when
the exposure parameters must be estimated, though the
bias with EGLS is less than that with OLS

= For both OLS and EGLS, the variance of 5 Is under-
estimated, but the bias Is more pronounceglfor OLS than
for EGLS

= The parameter bootstrap results in an upwardly biased
estimate of the variance of

= The parametric bootstrap reédluces the bias in the
estimated variance of , but it is still present

= The coverage probabil#ties suggest using the parametric
bootstrap

-




- Is There an Association Between PM, . and\
Birth Weight?

To model the spatial and temporal association
between birth weights and the changing levels of
PM, - In Florida

Initial focus: PM, . Data from August 2005
Birth weights during first 12 hours
of September 1, 2005




PM, : EXxposure

EPA’s National PM, : Air Quality Standards are based on the
24-hour average and annual average. The daily average
PM, - value is used here.

To avoid peak PM, : levels being reduced by averaging over
days of the month, the maximum of the daily average
PM, : values during a month was used as the monthly data
value for a particular monitor.
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Florida PM,, . Monitors in August 2005

32 Monitors
Data collected by FDEP
About a 3-month lag
o | between data collection
Sw- el i[i\ and completion of quality
L5 S S assurance
= N ol
o= )
17
\\1-"/
-88 -86 -84 -82 —;30
Longitude




Latitude

30

28

26

24

Live Birth Weight Data

|

Longitude

™~

265 Live births during first
12 hours of September
1, 2005

Data collected by the
Florida Department of
Health’s Office of Vital
Statistics

Data sharing agreement

Geocoded addresses
Included in the file

Information on mother’s
age, ethnicity, etc.

/




Relating Birth Weight to PM,, ¢

Yi = :Bo "',Bl)A(i T V;Bv +€

where

y; = birth weight of ith baby

X. Is the predicted maximum PM, ¢ level for baby I
assuming a constant mean and exponential
covariance structure

Vi’ = (Viy, ..., Vi) are covariates for baby I

By, BB, are the unknown parameters

e; Is the error associated with county |

Suppose that the errors are assumed to be iid N(0O, ¢2).




Covariates

Gestational Age (in weeks)

Age of Mother (in years)

Weight gain of Mother (in pounds)

History Factor - Diabetes/Prepregnancy - Yes/No

History Factor - Diabetes/Gestational - Yes/No

Tobacco Use - Yes/No

History Factor - Hypertension/Prepregnancy - Yes/No

History Factor - Hypertension/Gestational - Yes/No

History Factor - Previous Preterm Birth - Yes/No

A calculated code identifying the mother into one of 6 Hispanic
origins

A calculated code identifying the mothers race into one of 14 races
History Factor - Mother Received Food Stamps - Yes/No

The principal source of payment - 4 Categories
The mothers education — 8 Categories
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Methods for Relating Birth Weight to PM,, ¢

»Krige and Regress
*PM, ¢ Is predicted for each residence associated with

the birth of a baby
*OLS 15 used to estimate the association between birth

weight and PM, ¢ ignoring prediction error

»Krige and EGLS
*PM, ¢ IS predicted for each residence associated with

the birth of a baby
*EGLS i1s used to estimate the association between birth

weight and PM, ¢ accounting prediction error
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Results

MSE from OLS: 200,770
62 from EGLS: 199,402

OLS

OLS with Parameter Bootstrap
EGLS with No Iteration

EGLS with Iterations

EGLS with Parametric Bootstrap

EGLS with Parameter Bootstrap

-12.67
-12.67
-12.75
-12.75
-12.75
-12.75

N 2

66.92
215.90
69.06
69.08
87.54
327.67




. Conclusions

> If environmental exposure is predicted and the parameters of
X are known, the estimate of the association between health
and environmental exposure obtained through regression is
unbiased, but the standard error tends to be under estimated.

> The EGLS estimator Is unbiased and provides appropriate
standard errors If the parameters of X are known.

> If the parameters of X are estimated, classical measurement
error Is introduced, and the estimate of the association
between health and environmental exposure obtained
through regression may be biased, and the standard errors
may be biased.

> AS the number of observed health outcomes increases
relative to the number of observed exposures, measurement
error becomes more dominant than Berkson error.

-
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Conclusions

> Bootstrap approaches can be used to adjust the standard
errors for classical measurement error, but

- The estimated parameter may be biased

- The standard errors remain biased

- The coverage probability is close to the nominal level
> ldeally, the exposure and health outcomes should be

modeled together instead of the stepwise approach
considered here.




Conclusions

> Exposure of persons to PM, . Is the association of
Interest. Two problems:
v Ambient PM, . levels serve to approximate PM, . exposure.
v' Exposure Is predicted at the residence.

»>Goal 1s on-going monitoring. EXisting space-time
models are not readily extendable to this setting.
> Bayesian models tend to be problem-specific and
cannot readily be adapted for different variables,

locations, time, etc.




Conclusions

> The process of relating health outcomes to
environmental factors, from data collection
through interpretation, iIs challenging.

»>Standardized analytical approaches should be
adopted If the process Is to become routine.




