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Purpose of Study: What is the association between 

health outcomes and environmental exposure?

Exposure observed at 32              Health outcomes observed on

monitor locations                         different geographical units
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Regression Relating Health Outcome to 

Environmental Exposure

Consider the simple linear regression

where                         and 

Note:  

is observed health outcome

is unobserved exposure

is observed exposure

)()()( 10 uuu sesxsy  

),(N~ eΣ0e

2D  ),)((N~)( sΣξssx xC

)( osx

)( usx

)( usy



Classical Measurement Error

Suppose that a model is used to predict exposure at the 

points of observed health outcomes. Further assume 

that the model provides unbiased predictions with 

normally distributed measurement error; that is, 

where                      . This is classical measurement 

error. The predicted exposure is more variable than 
the true exposure. 
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Ignoring Prediction Error: Model and 

Regress

Ordinary Least Squares:

where

is

Biased estimator of

Uncertainty associated with predicting exposure results in standard 

errors being under-estimated
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Classical Measurement Error

—— True Population Regression Line

—— Estimated Population Regression Line



Berkson Error

Suppose kriging is used to predict exposure at the points of 
observed health outcomes.

where     is a known mean parameters of x

is the known var-cov matrix among unobserved locations

is the known var-cov matrix among observed locations

is the known var-cov matrix among observed and 

unobserved locations

That is,

  ))(),((N~)(|)( 0 ukuku sΣsμsxsx

  ))()(()()( 1
ξsCsxΣΣξsCsμ oooououuk  

  1

000 ouuuuk ΣΣΣΣΣ


0uΣ
ooΣ

  uuΣ

ξ

  ),(N~    ,)()(|)( 0 kuku Σ0vvsμsxsx 



Berkson Error

Using the predicted exposure,                          , results in a 

smoother surface than the true exposure          ; that is, 

Thus,

where                   . The error v associated with the 

prediction of exposure is known as Berkson error. 
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Ignoring Prediction Error: Krige and 

Regress

Ordinary Least Squares:

where

is

Unbiased estimator of

Uncertainty associated with predicting exposure results in standard 

errors being under-estimated

How does one account for the additional uncertainty induced 

by using kriging predictions in linear regression models?
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Prior Work

Hierarchical Bayesian Models

Mugglin and Carlin, 1998; Mugglin, et al. 1999; 

Gelfand, et al. 2001; Zhu, et al. 2003

Adjusted Krige and Regress Method

Madsen, et al. 2009

Bootstrap Methods

Szpiro, et al. 2010

Comparison of Existing Methods 

Gryparis, et al. 2009 and Lopiano, et al. 2010



Comparison of Existing Methods 

Gryparis, et al. 2009 and Lopiano, et al. 2010

Conclusion: Existing frequentist approaches do 

not provide unbiased estimates of uncertainty

Goal: Develop an easy to implement frequentist

approach



Developing an Estimator

Recall:

Note:

Thus,
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Developing an Estimator

and         are known

The generalized least squares estimator of     is the best linear 

unbiased estimator:

The variance  of this estimator is
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An Estimated Generalized Least Squares 

(EGLS) Estimator

Assuming                   , the challenge is that       is unknown so 

that                                is unknown (recall       is assumed 

known)  

Let                                                          . Then

is an unbiased estimator of       .   

Thus,                                     is an unbiased estimator of              
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An Estimated Generalized Least Squares 

(EGLS) Estimator

The EGLS estimator is

with variance

where
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Iteration Process for Final Estimate

1. Update

where

and

2. Update  

,

and 

3. Iterate (1) and (2) until changes in estimates are sufficiently 
small.
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Parameters Associated With X

Suppose      and      , the mean and covariance parameters, 
respectively, associated with X, are unknown. 

Then,

and the estimated variance of                       (the kriging
variance) is

. 

Note: No correction is being made for using the plug-in 
estimators of   

ξ Xτ
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Simulation Study 

Exposure measured at 56                      Health outcomes observed on a 

monitor locations                                  grid



Simulation Study

10,000 Datasets Generated for Each Scenario

Exposure Model

 Mean

• 40

• -73 x 0.23  Northing – 0.00011  Northing2

Variance-Covariance

• Exponential covariance structure with a scale of 70 and a 

range of 200



Study Results: Mean Only
True Model:                                                         

where

observed mean of

observed variance of

observed mean of estimated variance of

Coverage: observed coverage for nominal 95% confidence intervals 
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Study Results: Trend Surface
True Model:                                                         

where

observed mean of

observed variance of

observed mean of estimated variance of

Coverage: observed coverage for nominal 95% confidence intervals 
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Study Results: Trend Surface,  Modeled as 

Constant Mean

True Model:                                                         
where

observed mean of
observed variance of
observed mean of estimated variance of

Coverage: observed coverage for nominal 95% confidence intervals 
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Berkson Error and Classical 

Measurement Error

When kriging is used to predict environmental exposure 

at points at which health outcomes are observed, 

Berkson error occurs.

When the kriging parameters are not known, but must be 

estimated, classical measurement error is introduced

Estimated generalized least squares adjusts for Berkson

error, but what about classical measurement error?



Accounting for Classical 

Measurement Error

Szipiro, et al. (2010) suggested three approaches for 

correcting for classical measurement error when 

predicting exposure and then using ordinary least 

squares to relate health outcomes to environmental 

exposure:

• Parametric bootstrap

• Parameter bootstrap

• Partial parametric bootstrap

Can these be extended to generalized least squares?



Parametric Bootstrap

The steps for the estimation process are as follows.

1. Estimate the exposure model parameters,     and        

2. Use             to estimate model parameters            and     

3. Repeat the steps below for each j = 1, 2, …, M

(a) Simulate a new set of observations Yj(su) and Xj(so) based on the 

models for exposure and health outcomes using    ,       ,          , and      .

(b) Estimate new X parameters      and          using Xj(su).

(c) Derive              using     ,         , and Xj(su) 

(d) Calculate

4. Calculate the parametric bootstrap standard error
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Parametric Bootstrap

The method is computationally intensive

Estimating     and        requires nonlinear optimization, and this 

is required for each of the M steps in the parametric 

bootstrap.

However, the sampling distribution        of      and      can be 

estimated without much additional cost.
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Parameter Bootstrap

The steps for the estimation process are as follows.

1. Estimate the exposure model parameters,     and       , and their 

sampling distribution                 

2. Use             to estimate model parameters           and     

3. Repeat the steps below for each j = 1, 2, …, M

(a) Simulate a new set of observations Yj(su) and Xj(so) based on the 

models for exposure and health outcomes using    ,       ,          , and      .

(b) Sample the parameters      and         from the probability 

distribution defined by 

(c) Derive               using     ,         , and Xj(su) 

(d) Calculate

4. Calculate the parametric bootstrap standard error
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Partial Parameter Bootstrap (PPB)

To reduce computations, the PPB  was suggested

Instead of estimating     and        for each bootstrap sample, 

the estimates from the data are used.

This ignores the classical measurement error, but accounts 

for Berkson error

The EGLS estimator fully accounts for Berkson error so the 

PPB is not considered further
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Study Results: Trend Surface

True Model:                                                        where

observed mean of

observed variance of

observed mean of estimated variance of

Coverage: observed coverage for nominal 95% confidence intervals 
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Method Coverage

OLS 0.208 0.00373 0.00265 90.70

OLS & Parameter Bootstrap 0.208 0.00189 0.00370 96.40

EGLS with Iteration 0.197 0.00196 0.00177 92.92

EGLS & Parametric Bootstrap 0.197 0.00220 0.00206 93.33

EGLS & Parameter Bootstrap 0.197 0.00202 0.00380 96.72
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Conclusions from Simulation

 Both OLS and EGLS estimators exhibit some bias when 
the exposure parameters must be estimated, though the 
bias with EGLS is less than that with OLS

 For both OLS and EGLS, the variance of     is under-
estimated, but the bias is more pronounced for OLS than 
for EGLS

 The parameter bootstrap results in an upwardly biased 
estimate of the variance of 

 The parametric bootstrap reduces the bias in the 
estimated variance of     , but it is still present

 The coverage probabilities suggest using the parametric 
bootstrap 
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Is There an Association Between PM2.5 and 

Birth Weight?

To model the spatial and temporal association 

between birth weights and the changing levels of 

PM2.5 in Florida 

Initial focus:  PM2.5 Data from August 2005

Birth weights during first 12 hours

of September 1, 2005



PM2.5 Exposure

EPA’s National PM2.5 Air Quality Standards are based on the 

24-hour average and annual average. The daily average 

PM2.5 value is used here.

To avoid peak PM2.5 levels being reduced by averaging over 

days of the month, the maximum of the daily average 

PM2.5 values during a month was used as the monthly data 

value for a particular monitor.



Florida PM2.5 Monitors in August 2005

32 Monitors

Data collected by FDEP

About a 3-month lag 

between data collection 

and completion of quality 

assurance
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Live Birth Weight Data

265 Live births during first 
12 hours of September 
1, 2005

Data collected by the 
Florida Department of 
Health’s Office of Vital 
Statistics

Data sharing agreement

Geocoded addresses 
included in the file

Information on mother’s 
age, ethnicity, etc. 
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Relating Birth Weight to PM2.5

where 

yi = birth weight of ith baby

is the predicted maximum PM2.5 level for baby i

assuming a constant mean and exponential 

covariance structure

vi’ = (vi1, …, vik) are covariates for baby i

are the unknown parameters 

ei is the error associated with county i

Suppose that the errors are assumed to be iid N(0, σ2).
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Covariates
 Gestational Age (in weeks)

 Age of Mother (in years)

 Weight gain of Mother (in pounds)

 History Factor - Diabetes/Prepregnancy - Yes/No

 History Factor - Diabetes/Gestational - Yes/No

 Tobacco Use - Yes/No

 History Factor - Hypertension/Prepregnancy - Yes/No

 History Factor - Hypertension/Gestational - Yes/No

 History Factor - Previous Preterm Birth - Yes/No

 A calculated code identifying the mother into one of 6 Hispanic 

origins

 A calculated code identifying the mothers race into one of 14 races

 History Factor - Mother Received Food Stamps - Yes/No

 The principal source of payment - 4 Categories

 The mothers education – 8 Categories



Methods for Relating Birth Weight to PM2.5

Krige and Regress
•PM2.5 is predicted for each residence associated with 

the birth of a baby

•OLS is used to estimate the association between birth 

weight and PM2.5 ignoring prediction error

Krige and EGLS
•PM2.5 is predicted for each residence associated with 

the birth of a baby

•EGLS is used to estimate the association between birth 

weight and PM2.5 accounting prediction error



Results

Method

OLS -12.67 66.92

OLS with Parameter Bootstrap -12.67 215.90

EGLS with No Iteration -12.75 69.06

EGLS with Iterations -12.75 69.08

EGLS with Parametric Bootstrap -12.75 87.54

EGLS with Parameter Bootstrap -12.75 327.67

MSE from OLS: 200,770

from EGLS: 199,4022̂



Conclusions

 If environmental exposure is predicted and the parameters of 

X are known, the estimate of the association between health 

and environmental exposure obtained through regression is 

unbiased, but the standard error tends to be under estimated.

The EGLS estimator is unbiased and provides appropriate 

standard errors if the parameters of X are known.

 If the parameters of X are estimated, classical measurement 

error is introduced, and the estimate of the association 

between health and environmental exposure obtained 

through regression may be biased, and the standard errors 

may be biased.

As the number of observed health outcomes increases 

relative to the number of observed exposures, measurement 

error becomes more dominant than Berkson error.



Conclusions

Bootstrap approaches can be used to adjust the standard 

errors for classical measurement error, but

• The estimated parameter may be biased

• The standard errors remain biased

• The coverage probability is close to the nominal level

 Ideally, the exposure and health outcomes should be 

modeled together instead of the stepwise approach 

considered here.



Conclusions

Exposure of persons to PM2.5 is the association of 

interest. Two problems:
Ambient PM2.5 levels serve to approximate PM2.5 exposure.

 Exposure is predicted at the residence.

Goal is on-going monitoring.  Existing space-time 

models are not readily extendable to this setting.

Bayesian models tend to be problem-specific and 

cannot readily be adapted for different variables, 

locations, time, etc.



Conclusions

The process of relating health outcomes to 

environmental factors, from data collection 

through interpretation, is challenging. 

Standardized analytical approaches should be 

adopted if the process is to become routine. 


