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INTRODUCTION

• Genetics markers (SNPs) available (millions in 
humans)

• Variation in gene frequencies among groups can 
be used to assess “signatures” of forces such as 
selection
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selection

• Examples:

� Low vs. high production breeds

� Selection lines

� Human populations

� Cases (sick) vs. controls (healthy)



Our interests may include:

• Identify genomic regions associated with a trait

• Use such knowledge in marker-assisted

breeding programs

• Find markers or genes associated with variation 
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• Find markers or genes associated with variation 

in disease traits + use this in individualized

medicine (“personalized” medicine)

• Compare allelic frequencies between efficient 

and less efficient strains of animals (nutri-

genomics)



FST=θ STATISTIC
(metric for measuring variation in allelic 

frequencies between populations)

• WRIGHT (1931, 1951)

• LEWONTIN AND KRAKAUER (1973)
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• LEWONTIN AND KRAKAUER (1973)

• COCKERHAM (1969, 1973), NEI (1973)

• HOLSINGER AND WEIR (2009) review in 

Nature Genetics Reviews

• AKEY (2009) review in

Genome Research

old

new



BRIEF TOUR OF F-STATISTICS

•Measure relatedness between alleles in a 

sub-population, relative to that in an undivided 

(e.g., ancestral) population
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(e.g., ancestral) population

EQUIVALENTLY:

•Measure dispersion in gene frequencies among groups

relative  to variation expected in population from which 

such groups derived



Linear model formalism

(Cockerham, 1969, 1973)

Notation:

l=1,2,…,L     Denotes locus l

r=1,2,…,R     Denotes population or “replicate” r

i                    Denotes individual
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i                    Denotes individual

j                     Denotes within-individual deviate

Bi-allelic locus (SNP):

in undivided population



uncorrelated
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Covariance structure between alleles



Correlation structure between alleles

9Wright’s F-statistics



Relationships between F values:

10

(a) (c) (b)

(a) Total loss of heterozygosis

(b) Loss due to population sub-division (Wahlund’s)

(c) Loss due to within population inbreeding



Important: note that

Consider a given realization of gene frequencies as in Nei (1973)
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Making the parameter

explicit in all unknown 

allelic frequencies

IMPORTANT: This is a parametric definition
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ILLUSTRATION
(how the concept is used in practice)

12



Lightly colored bars: coalescent simulations under neutrality

Distribution for FST> 0.5

Excess over

Expected when

FST<0.1
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1. Upper 2.5% of

empirical

Distribution of

F-values

3. Yellow lines:

14Distribution of FST by chromosome

(F-values for adjacent SNPs are correlated)

2. Gaps: heterochromatic

regions near centromeres

3. Yellow lines:

Average FST for

Non-overlapping

1 Mb bins
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Simulations under the coalescent understate correlation between F-statistics for linked SNPs
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Intron: region within gene not translated into protein

Non-coding: no instructions for making protein



F

F

Exon

Low

High
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F

Introns

High+low



CANDIDATE GENES IDENTIFIED ON FST VALUES SUGGESTIVE OF SELECTION
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STATISTICAL INFERENCE

• Given a set of loci, assume that all follow same 
demographic history and patterns of migration

• If all loci are neutral and have same mutation rates, can 
be viewed as realizations of the same evolutionary 
process

• Under selective neutrality, distribution of F-values 
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• Under selective neutrality, distribution of F-values 
determined entirely by drift

• Outliers regarded as “selection signatures”

� Low values: balancing selection (Cavalli-Sforza,                 
1966)

� High values: selection favor some alleles in 
some populations (milk yield: Holsteins; mastitis: NRF)

VERY ARBITRARY!



Population genomics standard design for selection signatures (Akey, 2009)
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Meta-map of selection signatures (Akey, 2009): “overlap is underwhelming”

Based on

9 scans
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METHODS OF INFERENCE

• Moments (ANOVA type): crudest, widely 

used

• Maximum likelihood (asymptotic properties)
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• Maximum likelihood (asymptotic properties)

• Bayesian: exact finite sample inference 

(at the expense of priors)



Example of Bayesian method

(Holsinger, 1999)
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Beta prior with parameters

Allele frequencies

In original pop.
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Joint posterior

Beta(2,1)           Uniform

FIND MARGINAL POSTERIOR OF θ TO ESTABLISH NULL PROCESS

(MARKOV CHAIN MONTE CARLO SAMPLING NEEDED)



A TWO-STEP PROCEDURE

• First: infer θ locus by locus. Bayesian model with 
minimally informative prior assigned to allelic 
frequencies

• Second: feed posterior means or transformations 
thereof (or entire collection of samples) to mixture 
model
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thereof (or entire collection of samples) to mixture 
model

�Use mixture model to construct clusters of θ-
values

�Interpret clusters in the light of available biological 
knowledge



Step 1

a) Prior for allelic frequency of A at each locus

(Jeffreys , maximum entropy, reference prior) 

b) Likelihood function of all allelic frequencies (assuming linkage equilibrium)
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c) Joint posterior distribution of allelic frequencies



d) Draw S samples from posterior distribution of θl  by evaluation of samples

from posterior distributions of allelic frequencies

(

Sample s s ��
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e) From samples, estimate posterior mean, SD, density, distribution function

for each locus. Vector of posterior means is of order L x 1

f) Check whether or not the θ’s observed depart from what would be expected

by chance. If not, sample lacks power to address the question of whether

or not the locus has been affected by selection

(



EXAMPLE

• Hypothetical population M: 100 individuals 
sampled. #(Al)=199 #(al)=1

• Hypothetical population N: 30 individuals 
sampled. #(Al)=10 #(al)=50
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sampled. #(Al)=10 #(al)=50

• If the draws had been from a single
population: 130 individuals.  

#(Al)=209 #(al)=51

• Draw S=1000 samples from posterior

distribution of allelic frequencies and θ



Population M
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Population N

30
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Step 2

• TREAT POSTERIOR MEANS AS RESPONSE 
VARIABLES

• FIT NORMAL MIXTURE MODELS TO 
POSTERIOR MEANS OR TRANSFORMS 
THEREOF (e.g., MAXIMUM LIKELIHOOD, EM 
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THEREOF (e.g., MAXIMUM LIKELIHOOD, EM 
algorithm, FlexMix in R)

• FIND BEST FITTING MODEL (AIC, BIC)

• CLUSTER LOCI ACCORDING TO θ VALUES

• INTEREPRET CLUSTERS ACCORDING TO 
AVAILABLE BIOLOGICAL KNOWLEDGE



MIXTURE MODEL

(Logit)                 (Gompit)

# components (clusters)

Probability of membership
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POSTERIOR (given parameter estimates) PROBABILITIES OF MEMBERSHIP

CHOOSE K YIELDING SMALLEST AIC

#loci



THE CONCEPT OF PENALTY FOR NUMBER OF PARAMETERS:

AKAIKE’S INFORMATION CRITERION

(choose models with smallest value)

AIC�Model k)�-2�
i�1

N

log�pk�y i |����k��	2p

#parameters in model k

Example: regression model

yi 
N�x i
�����,2� [independence assumed]

Deviance (decreases with # parameters)
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Maximized log-likelihood
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��1
2
N log 2�

2
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AIC�p regressions) �N log 2�
2

	N	2p
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2

	2p

Model with more predictors decrease deviance but have more complexity (p)



TREE DATA FROM PETIT et al. (1998)

12 populations
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12 loci



Box plots of posterior distributions of θ for each of the 12 loci (2000 samples per locus)
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Put the 24000 samples in bag and estimate the density of the resulting distribution

4 modes
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Analysis

supports

no more

than 2

clusters of

Θ values
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SAME CLUSTERS ARRIVED AT IRRESPECTIVE OF TRANSFORMATION



Detecting selection signatures 

in cattle
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Qanbari, Gianola, Hayes, Schenkel, 

Miller, Moore, Thaller, Simianer



Description of samples

Breed

Code Data 

set

Sample 

size (n)

Country Purpose

Holstein HS I II 2091 Germany Dairy

Brown Swiss BS I II 277 Germany Dairy

Simmental SI I II 462 Germany
Dual-

purpose

Canadian Angus CA - II 103 Canada Beef
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Piedemontese PI - II 43 Canada Beef

Australian 

Angus
AA I - 232 Australia Beef

Brahman BR I - 80 Australia Beef

Belmond Red BE I - 166 Australia Beef

Hereford HR I - 158 Australia Beef

Murray Gray MG I - 57 Australia Beef

Santa Gertrudis SG I - 126 Australia Beef

Shorthorns SH I - 81 Australia Beef



Genome wide summary of marker statistics 

for the breeds used in a LD analysis (data set I). 

Breed
SNP

(n)

MAF

(%)

ObsHET

(%)

Inter-marker

distance (kb)

Max gap

(kb)

Holstein 39474 28.2±13 37.2±12 64.45±62.5 2081.4

Brown Swiss 35226 27.7±13 36.6±13 72.26±72.8 2081.4

Simmental 37976 27.5±13 37.0±12 67.06±69.8 2145.7

Australian Angus 44938 24.3±15 32.3±16 56.70±52.4 2081.5
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Brahman 45173 16.4±14 23.7±17 56.40±51.3 1677.8

Belmond Red 47416 24.1±15 32.3±16 53.74±47.9 1677.8

Hereford 45322 25.5±15 34.1±16 56.22±52.1 2081.5

Murray Gray 41369 24.4±15 33.3±17 61.52±59.0 2081.5

Santa Gertrudis 46809 23.6±15 31.7±17 54.44±48.9 1677.8

Shorthorns 42280 21.7±15 28.5±16 60.26±56.9 2081.5
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Figure 1. Decay of LD as a function of inter-marker distance in      

dairy and beef breeds



Weir's unbiased F(ST) vs Bayesian posterior 

mean of Theta
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t
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Disagreement at “high” differentiation: 1) shrinkage; 2) division by R-1



HOLSTEIN VS HOLSTEIN: 2 RANDOM PARTITIONS

47No differentiation

Good agreement with unbiased estimator

in the absence of differentiation



Summary statistics of pair-wise estimates of FST and clustering information

HS BS SI AN

θ K1 L2 θ K L θ K L θ K L

BS 0.05 5 4878

SI 0.04 4 7796 0.04 5 7691
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AN 0.27 3 12106 0.29 4 5571 0.28 3 10882

PI 0.27 3 19442 0.28 3 18637 0.27 3 8867 0.02 7 2247

1 K= Number of clusters; 2 L= Number of SNPs with largest θ values representing the first cluster of loci

Dairy vs Beef: HS and AN (mean of posterior means)� 0.27 ± 0.01 

Beef vs  Beef: AN and PI                                            � 0.02 ± 0.01

Dairy vs Dairy: HS and BS                                         � 0.05 ± 0.01.
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Distribution (blue) of posterior means over loci of θ values using two dairy (HS, BS) and two beef breeds (CA and PI)

and densities of the underlying mixture of two normals (green) and the respective components (red). The data support a

2-component mixture.



Dots:

HS-AN

HS-PI

BS-AN

BS-PI

-29% of

Windows overlapped

-BTA 9 80 windows

50Chromosomal position (Mb)

Windows with FST >0.3, indicating genomic position of the most diverse regions of dairy vs. beef breeds.

Dashed lines � upper 2.5% of the distribution of posterior means.

-BTA 9 80 windows

covering 0.35 of

Chromosome

-BTA 25 23 windows

covering 0.26 of

chromosome



GENOME ANOTATION WITH iHS (“integrated haplotype score”) or FST
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“Gene desert”

-regulatory regions?

-non-coding DNA fixed by drift?



CONCLUSIONS

• F-statistics used for detecting signatures of selection

• Several Bayesian methods available (with and without 
MCMC)

• Simple 2-step procedure proposed

• Mixture model can be enriched by placing more structure 
on means (e.g., chromosome, coding vs. non-coding)
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on means (e.g., chromosome, coding vs. non-coding)

• Generalization to multiple alleles 

• EM algorithm breaks down if entire set of posterior 
samples is fed (can use, e.g., medians and upper and 
lower percentiles)

• Main challenge: accommodate linked and LD loci, e.g. 
introduce kernel structure in mixture model

Gianola, Qanbari and Simianer, 2010. Genetics Research 


