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Summary

A two-step procedure is presented for analy-
sis of (FST) statistics obtained for a battery
of loci, which eventually leads to a clustered
structure of values. The �rst step uses a sim-
ple Bayesian model for drawing samples from
posterior distributions of −parameters but
without constructingMarkov chains. This step
assigns a weakly informative prior to allelic
frequencies and does not make any assump-
tions about evolutionary models. The second
step regards samples from these posterior dis-
tributions as "data" and �ts a sequence of �-
nite mixture models, with the aim of identify-
ing clusters of −statistics. Hopefully, these
would re�ect different types of processes and
would assist in interpreting results. Proce-
dures are illustrated with hypothetical data,
and with published allelic frequency data for
Type-II diabetes in three human populations,
and for 12 isozyme loci in 12 populations of
the argan tree in Morocco.

1. Introduction

Thediscovery of amassive number of single nu-
cleotide polymorphisms (SNPs) in the genome of
several species has enabled exploration of genome-
wide signatures of selection via an assessment of
variation in marker allele frequencies among pop-
ulations (e.g., Holsinger and Weir, 2009). Sev-
eral methods have been proposed for doing this,
such as site frequency spectrum, linkage disequi-
librium and population differentiation (Sabeti et

al., 2006; Akey, 2009). Concerning population
differentiation, a parameter = FST , measur-
ing relatedness between pairs of alleles within a
sub-population relative to that in an entire popula-
tion, has been used for this purpose (Wright, 1951;
Cockerham, 1969; Weir and Hill, 2002); Lewon-
tin and Krakauer (1973) and Robertson (1975)
discuss related approaches. Equivalently, can
be interpreted as a measure of dispersion of gene
frequencies among groups relative to the variation
expected in the population from which such groups
derived. For example, Akey et al. (2002) ana-
lyzed over 26,500 SNPs for which allele frequen-
cies were available in three populations of humans.
The parameter was estimated for every marker
locus and the distribution of estimates over the
entire genome, and by chromosome, was exam-
ined. By referring these estimates to their empiri-
cal genome-wide distribution, 174 candidate genes
were identified as possible targets of selection.

Holsinger and Weir (2009) provide an account
of the logic of the procedure. Briefly, given a set
of loci in a given species, a reasonable assump-
tion is that all share the same demographic history
and patterns of migration. If these loci are neu-
tral and have similar mutation rates, members of
this set can be conceivably regarded as exchange-
able realizations of the same evolutionary process.
Loci showing departures from the resulting distri-
bution may serve as flags of genomic regions that
have been under the influence of selection. Under
the hypothesis of selective neutrality, the distribu-
tion (over loci) of estimates of is expected to
be driven by genetic drift, assumed to affect all
loci in a similar fashion. On the other hand, when
selection operates on one or several loci (as in a
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multifactorial model for complex traits), markers
that arewithin genes or in nearby locationswill dis-
play large or small values of , the latter occurring
when some sort of balancing selection takes place
(Cavalli-Sforza, 1996). This opens an avenue for
identification of regions associated with popula-
tion differentiation, e.g., high versus lowproducing
breeds of dairy cattle. Knowledge of such regions
may be useful for enhancing the effectiveness of
breeding programs via marker-assisted selection,
or for tagging variants associated with disease or
quantitative traits. While unusual values of may
point to genomic locations where selection may
have operated, there is arbitrariness with respect
to characterizing the type of selection that might
have occurred. Typically, loci are classified as ei-
ther neutral, or subject to balancing selection (low
values of ), or favored by selection within some
specific population or environment (large popula-
tion differentiation, thus leading to large values of
). If the values of arise from different evolu-

tionary or artificial (such as in plant and animal
breeding) processes, one would expect to observe
a mixture of distributions leading to clusters repre-
senting the different kinds of mechanisms operat-
ing. There is no apparent reason why there should
be only two or three such clusters; there may be
several clusters harboring loci undergoing different
types of selection processes. On the other hand, if

values vary completely at random due to genetic
drift, a single cluster is to be expected.

Statistical issues associated with inferring −
statistics have been discussed, e.g., by Weir and
Cockerham (1984) and Weir and Hill (2002), with
emphasis in methods of moments estimation; by
Balding (2003) using maximum likelihood for
beta-binomial and Dirichlet-multinomial distribu-
tions, and by Holsinger (1999), Beaumont and
Balding (2004) and Guo et al. (2009) employing
Bayesian procedures. None of these treatments
have addressed the possible existence of a clus-
tered structure.

The objective of this paper is to present a two-
step procedure eventually leading to clusters of
values. The first step, along the lines of Holsinger
(1999), Balding (2003) and Beaumont and Bald-
ing (2004), uses a simple Bayesian structure for
drawing samples from the posterior distributions
of −parameters but without constructing Markov
chains. This step assigns a weakly informative
prior to allelic frequencies and does not make any
assumptions about evolutionary models. The sec-
ond step regards samples from these posterior dis-
tributions as "data" and fits a sequence of finite
mixture models, with the aim of identifying clus-
ters of −statistics. Hopefully, these would reflect

different types of processes and would assist in in-
terpreting results.

The paper is organized as follows. Section
BACKGROUND reviews basic concepts. In ES-
TIMATION OF PARAMETERS the first step of
the procedure is presented, contrasted with maxi-
mum likelihood, and illustrated with a hypothet-
ical data set set and with data on type-II dia-
betes in three populations. CLUSTERING OF
−PARAMETERS describes the second step of

the procedure, and illustrates it with a data set
containing allelic frequencies for 12 polymorphic
isozyme loci in 12 populations of the argan tree
(Argania spinosa L. Skeels) of Morocco presented
in Petit et al. (1998) and analyzed by Holsinger
(1999). The paper concludes with a discussion of
the proposed methodology.

2. Background

2.1. Basic concepts

The stage is set by reviewing essentials of a
random effects treatment proposed by Cockerham
(1969, 1973). Suppose that genetic markers (e.g.,
SNPs) are screened in a set of individuals in each of
R groups or populations, the latter viewed as drawn
at random from some conceptual hyper-population
from which such groups derive. Consider a bi-
allelic locus (developments carry to multiple alle-
les as well) and let Al and al be the two alleles
at locus l (l = 1, 2, ...,L); define pl = Pr (Al) to
be the true, unobserved, frequency of allele Al in
the hyper-population, with 1 − pl = Pr (al) being
the frequency of al. Cockerham (1969) defines al
as any allele other than Al and uses an indicator
variable x to denote allelic state ("content"), such
that

xrij,l =
{

1 if an allele is Al

0 otherwise.

Here, r = 1, 2, ...,R denotes group or replicate; i
indicates an individual; j is an index for a within-
individual deviation, and l = 1, 2, ...,L is an in-
dicator for locus. Even though xrij,l is a binary
variable (so a linear model is questionable) Cock-
erham (1969) uses the linear decomposition

xrij,l = pl + ar,l + bri,l + wrij,l, (1)

where pl is as before and ar,l ∼
(
0, 2

a,l

)
, bri,l ∼(

0, 2
b,l

)
, and wrij,l ∼

(
0, 2

w,l

)
are mutually un-

correlated zero-mean random deviates, specific to
locus l; the 2′s are variance components.
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Under the assumption that all alleles at locus l have
the same marginal distribution,

E
(
xrij,l

)
= pl,

and

Var
(
xrij,l

)
= pl (1 − pl) = 2

a,l + 2
b,l +

2
w,l

= 2
l

for l = 1, 2, ...,L. Decomposition (1) induces the
following covariance structure between allelic con-
tent variables:

Cov
(
xrij,l, xr′i′j′,l

)
=⎧⎪⎪⎨⎪⎪⎩

2
l if r = r′, i = i′, j = j′
2
a if r = r′, i �= i′, j �= j′

2
a,l + 2

b,l r = r′, i = i′, j �= j′

Cov (ar, ar′) if replicates are correlated somehow.

A standard assumption is Cov (ar, ar′) = 0. The
following correlations (all positive) follow.

• Pairs of alleles drawn at random from different
individuals in the same group are correlated as

a,l =
2
a,l

2
a,l + 2

b,l + 2
w,l

= l = FST,l, (2)

so 0 ≤ l ≤ 1 for all l.

• Pairs of alleles drawn within individuals over
all replicates bear a correlation equal to

ab,l =
2
a,l + 2

b,l
2
a,l +

2
b,l +

2
w,l

= Fl = FIT,l

where F is the total inbreeding coefficient, also
known as FIT (e.g., Weir and Hill, 2002).

• The correlation between alleles within individ-
uals within the same replicate is

b,l =
2
b,l

2
b,l +

2
w,l

= f l = FIS,l

which is the within sub-population inbreeding
coefficient f .

It is easy to show that

l =
FIT,l − FIS,l

1 − FIS,l
= FST,l.

This expression satisfies

1 − FIT,l = (1 − FIS,l) (1 − FST,l) ,

indicating that a reduction in heterozygosity has
two sources: one that is due to population sub-
division or Wahlund’s effect, (1 − FST,l) , and a
reduction within subpopulation or group caused
by "local" inbreeding, (1 − FIS,l) .

Note that parameter FST given in (2) can also
be written as

l =
2
a,l

2
a,l + 2

b,l +
2
w,l

=
2
a,l

pl (1 − pl)
.

In Cockerham (1969), the variance 2
a,l arises by

drawing alleles from a random sample of pop-
ulations. Under conceptual repeated sampling,
this generates a distribution having such variance.
However, in many applications, the R groups under
study are targeted (as opposed to randomly sam-
pled) populations, e.g., Myles et al. (2007); this
defines a "fixed effects" model. Now, since 2

a,l
is the between-group variance in allelic content as
per model (1), an alternative parametric definition
of l in terms of the unknown gene frequencies of
the R groups is

l =

R∑
r=1

(pr,l−pl)
2

R

pl (1 − pl)
, (3)

where pl =
R∑

r=1
pr,l/R is the average (over groups)

of the frequencies of allele Al at locus l. Note that pl
is taken as an unweighted average; it does not seem
sensible to express a parameter in terms of sample
size (unless weights assigned to samples reflect
true population sizes). Expressing l explicitly in
terms of the locus-specific gene frequencies yields

l =

R∑
r=1

p2
r,l −

(
R∑

r=1
pr,l

)2

R⎛⎜⎜⎜⎝ R∑
r=1

pr,l −

(
R∑

r=1
pr,l

)2

R

⎞⎟⎟⎟⎠
, (4)

providing a mapping from the joint space of R al-
lelic frequencies to the single-dimensional space
of l, which resides in (0, 1). If allelic frequen-
cies for the different loci are driven from the same
stochastic evolutionary process (e.g., as generated
by random drift), this defines a distribution of val-
ues of expected under neutrality assumptions.
From a Bayesian perspective, every unknown is a
random variable and, since allelic frequencies are
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unknown, as given in (3) will posses a distribu-
tion, both a priori and a posteriori. In the first step
of the method proposed in this paper, the posterior
distribution of l will result from assigning a vague
prior to all allelic frequencies, corresponding in
some sense to what could be termed as a fixed ef-
fects treatment from a frequentist perspective. The
second step addresses the question of whether or
not all l stem from the same distribution or from
different distributions resulting from heterogene-
ity of the underlying stochastic processes. This
makes the treatment proposed here different from
those in, e.g., Holsinger (1999) or Balding (2003).

3. Estimation of parameters

3.1. Inferring gene frequencies

Gene frequencies can be inferred using a simple
Bayesian approach. Suppose that nr individuals
are genotyped in population r, so that the number
of alleles screened at locus l is 2nr = nr,Al + nr,al ,
where nr,Al and nr,al are the observed numbers of
copies of Al and al, respectively.

A convenient assumption is that of mutual in-
dependence between the distributions of alleles at
different loci (stronger than that of pairwise link-
age equilibrium). Linkage disequilibrium is per-
vasive but the assumption made above facilitates
matters and is widely used, e.g., by Corander et al.
(2003). Let p = (p1,p2, ...,pR)′ be an RL×1 vec-
tor of allelic frequencies for all R groups, where
pr = (pr,1, pr,2, ..., pr,L)

′ has order L × 1. Under
the mutual independence assumption, the likeli-
hood conferred by the observed number of copies
of alleles to the gene frequencies is

l (p|DATA) =
R∏

r=1

L∏
l=1

p
nr,Al
r,l (1 − pr,l)nr,al . (5)

The maximum likelihood estimator of pr,l is p̂r,l =
nr,Al
2nr

and its empirical variance is V̂ar (p̂r,l) =
p̂r,l(1−p̂r,l)

2nr
. The maximum likelihood estimator is

unbiased but unstable, and may take values at the
boundaries of the parameter space in small sam-
ples.

In a Bayesian treatment, allelic frequencies are
assigned a prior distribution that might be homoge-
neous or heterogeneous over populations, chromo-
somes or genomic regions (e.g., coding versus non-
coding regions). For example, Holsinger (1999,
2006) adopts a prior beta distribution, Beta (pl|al, bl)

(and interprets it as describing variation over pop-
ulations) with parameters

al =
1 −

xl,

and

bl =
1 −

(1 − xl) .

Here is common to all loci (i.e., the hypothesis of
neutrality) and xl is the mean allelic frequency at
locus l (averaged over populations). Using prop-
erties of the beta distribution in the parametric def-
inition of leads to

Var (pl)
E (pl) [1 − E (pl)]

=
albl

(al+bl)2(al+bl+1)
al

al+bl
. bl
al+bl

= .

Then, the joint posterior distribution of all un-
knowns (allelic frequencies, and vector x= {xl})
is

g (p, , x|DATA)

∝
R∏

r=1

L∏
l=1

p
nr,Al

+ 1− xl−1

r,l (1 − pr,l)
nr,al+

1− (1−xl)−1

g ( ) g (x) .

Holsinger (1999) took g ( ) = Beta(1, 2) dis-
tribution as prior for , and assumed that all xl
were identically distributed according to the uni-
form process g (xl) = U (0, 1) . Given and x, the
allelic frequencies are conditionally independent
with conditional posterior distributions

g (pr,l|ELSE) =

Beta
(
nr,Al + 1− xl, nr,al + 1− (1 − xl)

)
;

r = 1, 2, ...,R; l = 1, 2, ...,L,

where ELSE means all parameters other than pr,l
and the data observed. However, the conditional
posterior distributions of and x are not recog-
nizable, so an elaborate sampling scheme, e.g.,
one based on Markov chain Monte Carlo meth-
ods, must be tailored. Holsinger (1999) found
that inferences were insensitive with respect to the
choices of beta and uniform prior distributions for

and elements of x, respectively. However, it was
assumed (as in a neutral model) that all loci share
the same parameter. This produces a mutual
borrowing of information among loci (shrinking
pr,l towards a common value), but the procedures
is not explicit with respect to the existence of het-
erogeneity over loci due forces such as differen-
tial mutation or selective sweeps. As proposed by
Beaumont and Balding (2004), one could estimate
locus specific −values and refer these estimates
to the posterior distribution of under the homo-
geneity value. In this manner, outliers could be
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found with respect to the "neutral" distribution,
but this would not inform about the structure of
any latent heterogeneity.

Here, an alternative approach is used. Jeffreys
rule (Bernardo and Smith, 1994; Sorensen and Gi-
anola, 2002) is used to produce a reference prior,
which is a Beta

(
1
2 , 1

2

)
distribution assigned to all

loci in all populations. This reference prior distri-
bution is minimally informative in a well defined
sense (Bernardo and Smith, 1994). Using Bayes
theorem, the joint posterior density of all allelic
frequencies is now

g (p|DATA)∝
R∏

r=1

L∏
l=1

p
nr,Al +

1
2−1

r,l (1 − pr,l)nr,al+
1
2−1

=
R∏

r=1

L∏
l=1

Beta

(
nr,Al +

1
2
, nr,al +

1
2

)
. (6)

Thus, allelic frequencies at different loci are mutu-
ally independent, a posteriori, with pr,l following a
beta distribution with parameters rl = nr,AL + 1

2
and rl = nr,al + 1

2 . Possible point estimates of
allelic frequencies are the posterior mean

←→p r,l =
nr,Al +

1
2

2nr + 1
, (7)

and the posterior mode

p̃r,l =
nr,Al −

1
2

2nr − 1
, for nr,Al ≥ 1 . (8)

The variance of the posterior distribution of pr,l is

Var (pr,l|DATA) =

(
nr,Al +

1
2

)(
nr,al +

1
2

)
(2nr + 1)2 (2nr + 2)

(9)

Even though a weakly informative prior is used,
differences exist with respect to maximum likeli-
hood. To illustrate this point, consider a hypo-
thetical example with 2 groups, M and N. Sup-
pose that 100 individuals are genotyped in group
M and that the observed number of Al alleles is
199, i.e., the locus is nearly fixed. The maxi-
mum likelihood estimate of pM,l is 0.995 and its
estimated standard error is 4. 99 × 10−3; a cal-
culation based on asymptotic normality (without
truncation) yields that the probability of obtaining
estimates larger than 1 is close to 0.16! Further, the
probability of obtaining estimates between 0.9 and

Figure 1. Posterior density (thick line) of the
allelic frequency p at a locus for which 199

copies have been observed out of 200 alleles
counted in hypothetical population M; the

posterior distribution is Beta
(
199 +

1
2
, 1 +

1
2

)
.

The thin line is the density of a normal
approximation to the sampling distribution of

the maximum likelihood estimator.

0.995 is close to 1
2 . On the other hand, the poste-

rior distribution of pM,l is Beta
(
199 + 1

2 , 1 + 1
2

)
.

The posterior mean and posterior standard devi-
ation are 0.993 (note some shrinkage away from
the edge of the parameter space) and 6. 06×10−3,
respectively; the posterior probability of the fre-
quency being larger than 1 is exactly zero, and the
probability that pM,l takes values between 0.9 and
0.995 is about 0.57. Figure 1 displays the posterior
distribution of the allelic frequency obtained with
Jeffreys prior, overlaid against the normal approx-
imation to the distribution of the maximum likeli-
hood estimates. Clearly, the approach used makes
a difference, even in a situation where allelic fre-
quencies are estimated with reasonable precision,
as indicated by the small standard error of the max-
imum likelihood estimate and the small posterior
standard deviation in the Bayesian analysis (the
coefficient of variation of the posterior distribution
is less than 1%).

In the second population, N, 30 individuals are
genotyped and 10 alleles are of the type Al; the
maximum likelihood estimate of pN,l is then 1

6 ,
much lower than in M, and its sampling variance is
2. 31 × 10−3. The posterior distribution of pN,l is
Beta

(
10 + 1

2 , 50 + 1
2

)
. In N, the posterior density

of pN,l and the normal approximation to the den-
sity of the distribution of the maximum likelihood
estimator are very similar (not shown here).
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Differences in allelic frequencies between pop-
ulations M and N at the locus in question may be
due to random drift or may suggest a signature of
selection.

3.2. Inferring by maximum likelihood

A likelihood-based estimate of can be ob-
tained by replacing in (3) or (4) the unknown
allelic frequencies by their maximum likelihood
estimates. For the example of populations M and
N above, the estimate is

l̂ =

2∑
r=1

(
p̂r,l − p̂l

)2

2p̂l

(
1 − p̂l

) ≈ 0.704 6.

The sampling variance of the maximum likelihood
estimator of l can be approximated using a Tay-
lor series expansion. As shown in Appendix A,
the first derivative of l with respect to the allelic
frequency at locus l in group r is

∂

∂pr,l
l =

[
2 (pr,l − pl)

p2
l − p2

l

− (1 − 2pl)
pl (1 − pl)

]
l

R
,

for r = 1, 2, ...,R; l = 1, 2, ...,L, where pl =
R∑

r=1
pr,l

R
is as before and p2

l =

R∑
r=1

p2
r,l

R
. Further,

let

∇̂ =
{

∂

∂pr,l
l

}
pr,l=p̂r,l

,

be an RL × 1 vector of first derivatives evaluated
at the maximum likelihood estimates of the allelic
frequencies. Then, approximately

V̂ar
(

l̂

)
≈ ∇̂′V̂ar (p̂) ∇̂

=
R∑

r=1

{[
2 (pr,l − pl)

p2
l − p2

l

− (1 − 2pl)
pl (1 − pl)

]
l

R

}2

pr,l=̂pr,l

p̂r,l (1 − p̂r,l)
2nr

,

where V̂ar (p̂) = Diag

(
p̂r,l (1 − p̂r,l)

2nr

)
is a diag-

onal matrix containing the estimates of the sam-
pling variances of the maximum likelihood esti-
mates of allelic frequencies pr,l. For the hypothet-

ical example, V̂ar
(

l̂

)
≈ 9. 826 5 × 10−5. The

asymptotic normal approximation to the distribu-
tion of the estimates assigns nil probability to "es-
timates" outside of (0, 1) ; the probability of ob-
taining estimates of between 0.67 and 0.74 for
this two-population situation is 0.9996.

3.3. Bayesian inference of

Consider now finding the posterior distribution
of l as defined in (4) and without making the as-
sumption that the s are realizations from the same
stochastic process, i.e., without borrowing infor-
mation across loci over and above the shrinkage
of allelic frequencies produced by Jeffreys prior.
The posterior distribution is analytically difficult
to arrive at because l is a non-linear function
of gene frequencies in all R groups. However,
since it is easy to obtain independent samples from

each of the Beta

(
nr,Al +

1
2
, nr,al +

1
2

)
processes,

Monte Carlo estimates of features of the posterior
distribution of l can be obtained without using
Markov chain Monte Carlo methods at all. Let
p(s)

r,l , s = 1, 2, ..., S, be samples from the posterior
(beta) distribution of pr,l, the frequency of allele
Al at locus l. Then, a draw from the posterior dis-
tribution of l is given by

(s)
l =

R∑
r=1

(
p(s)

r,l

)2 −

(
R∑

r=1
p(s)

r,l

)2

R⎛⎜⎜⎜⎝
R

R∑
r=1

p(s)
r,l −

(
R∑

r=1
p(s)

r,l

)2

R

⎞⎟⎟⎟⎠
, (10)

which is a random variable with support in (0, 1)
(Holsinger, 2006). Then, from S samples, the
mean, median, variance, etc., of the posterior dis-
tribution of l can be estimated. Each l (l = 1, 2,
...,L) will have a point estimate and an assessment
of uncertainty, e.g., a credibility interval of size
95% given by the 2.5% and 97.5% percentiles of
the corresponding posterior distribution estimated
either from samples or from the normal theory ap-
proximation given in Appendix B.

In the hypothetical populations M and N the
posterior distributions of the frequency of Al are
Beta (199.5, 1.5) andBeta (10.5, 50.5) , respectively.
With draws denoted as B(s) (., .) , S samples from
the posterior distribution of l can be obtained as
in formula
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(s)
l =

[
B(s) (199.5, 1.5)

]2
+
[
B(s) (10.5, 50.5)

]2 − {[
B(s) (199.5, 1.5)

]
+
[
B(s) (10.5, 50.5)

]}2

2[
B(s) (199.5, 1.5)

]
+
[
B(s) (10.5, 50.5)

]− {[
B(s) (199.5, 1.5)

]
+
[
B(s) (10.5, 50.5)

]}2

2
; s = 1, 2, ..., S.

To illustrate, 5000 samples were drawn from
each of the two beta distributions, to form S =
5000 corresponding draws from the posterior dis-
tribution of l. The mean and median were 0.6966

Figure 2. Posterior density of l for the
hypothetical example of populations M and N.

Figure 3. Empirical cumulative distribution
function od l for the hypothetical example of

populations M and N.

and 0.6972, respectively; the standard deviation
was 0.070 and the range of values samples spanned
from 0.4268 to 0.8883. The posterior density of l
and the empirical cumulative distribution function
are in Figures 2 and 3, respectively. Values of l ap-
pearing with appreciable density range from about
0.5 to 0.9 (Figure 2), with small posterior proba-
bility assigned to values smaller than 0.6. (Figure
3).

3.4. A Bayesian "null" distribution for
assessing sampling variationuncertainty

It is important to check whether or not pos-
terior estimates of l depart from what would be
expected by chance alone. A posterior distribution
consistent with expectations under a "null" model
is formulated next. The l statistics calculated
from the "full" model above can then be referred
to this null distribution. Note that the "null" dis-
tribution given below describes the uncertainty to
be expected from drawing random samples from
the same population, but not the variability to be
expected due to genetic drift. If estimates of l
fall in this null distribution, this would indicate
that the study lacks power to answer evolutionary
questions in any meaningful manner.

A "null" distribution" is arrived at by stating
that pr,l = pl is the same random variable for all R
populations. Under this assumption, the posterior
distribution of the vector of gene frequencies (now
of dimension L × 1) under the "null" model is

g (p|DATA,Null)

∝
[

R∏
r=1

L∏
l=1

p
nr,Al
l (1 − pl)nr,al

]
R∏

l=1

p

1
2
−1

l (1 − pl)
1
2
−1

=
L∏

l=1

Beta

(
R∑

r=1

nr,Al +
1
2
,

R∑
r=1

nr,al +
1
2

)
.

(11)
Hence, allelic frequencies pl are mutually indepen-
dent, a posteriori, with pl|DATA,Null being a beta

distribution with parameters l =
R∑

r=1
nr,Al +

1
2

and
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r =
R∑

r=1
nr,al +

1
2
. A draw from the posterior dis-

tribution of the FST statistic under this model takes
the form

(s)
l,Null =

R∑
r=1

(
p(r,s)

l −p(s)
l

)2

R

p(s)
l

(
1 − p(s)

l

) , (12)

where p(r,s)
l is a draw from

Beta

(
R∑

r=1

nr,Al +
1
2
,

R∑
r=1

nr,al +
1
2

)
,

with R such draws involved in a realization of (s)
l ,

and p(s)
l is the average of the R draws. A set of

samples from the posterior distribution of l under
the null model is obtained by repeating the sam-
pling process S times. This distribution serves as a
reference against which the l statistics calculated
from the "full" model can be compared. If the pos-
terior mean of l obtained from the "full" model
falls outside of a high density area of the posterior
distribution of in the null model, then the diver-
gence between populations would be probably due
to drift or selection (assuming mutation rates are
constant over populations), but not due to chance
alone.

For the example of populations M and N,
R∑

r=1
nr,Al = 209 and

R∑
r=1

nr,al = 51. Figure 4 de-

picts the Beta (209.5, 51.5) distribution of the al-
lelic frequency under the "null" model. Note that
the maximum likelihood estimates of the allelic
frequencies in the M and N populations, of 0.995
and 1

6 , respectively, are not assigned any appre-
ciable density under this model. Upon drawing
5000 independent samples from the beta distribu-
tion of the allelic frequency under the null model,
5000 draws for (s)

l,Null were obtained by evaluating
(12) for each of the samples. Draws ranged from
8.24× 10−13 to 0.0503; the mean (standard devia-
tion) was 0.0038(0.0053) and the posterior median
was 0.0017. The posterior density of l,Null was
very sharp as shown in Figure 5. In the full model,
the estimated posterior mean (standard deviation)
of l was 0.6966, which is unlikely to have been
generated under the null distribution. This would
make the locus a reasonable candidate for further
examination.

Figure 4. Posterior density of the allelic
frequency p under the “null” model for

hypothetical populations M and N; 209 copies
of Al are observed out of 260 alleles screened.

Figure 5. Posterior density of l under null
model for the hypothetical example of

populations M and N.

3.5. Illustration of sampling variation with
candidate genes for type-II diabetes

The Bayesian method was applied to data per-
taining to identification of candidate gene variants
for type II diabetes in Polynesians (Myles et al.,
2007). Prevalence of this disease is high in several
Pacific populations, e.g., 40% of adults living in
the island of Nauru. DNA samples were obtained
from23Polynesians, 23NewGuineans and 19Han
Chinese from Beijing. Type II diabetes-associated
alleles were from 10 SNP loci having evidence of
association. Estimated frequencies and l statis-
tics are shown in page 587 of Myles et al. (2007).
To illustrate the Bayesian procedure, data for the
KCNJ11 locus was used, and susceptibility allele
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frequencies (Al in our notation)were 0.30, 0.25 and
0.34 in the three populations above, respectively.
Their figures do not lead to an integer number of
alleles, due to rounding error, so the number of ob-
served Al alleles used here was set to 14 (Polyne-
sians), 12 (New Guineans) and 13 (Han Chinese).
Myles et al. (2007) employed an "unbiased es-
timator" of l for calculating population pairwise
differences, and their estimates were 0.003 (New
Guinea- China), -0.024 (China-Polynesia) and -
0.017 (New Guinea-Polynesia). Note the two neg-
ative estimates of a parameter that resides in (0, 1) ;
standard errors or significance levels were not pro-
vided. Their analysis suggests that this locus is not
associated with prevalence of the disease.

The posterior distributions of Al were

BetaPolynesians (14.5, 32.5) ,

BetaNew Guineans (12.5, 34.5) and
BetaHan Chinese (13.5, 25.5) .

The number of samples drawn from each of these
3 posterior distributions was S = 1000, and 1000
draws from the posterior distribution of KCNJ11
were obtained by evaluation of (10). Values of

KCNJ11 ranged from 2.423×10−5 to 0.1500, with
an estimated posterior mean (standard deviation)
of 0.019 (0.0193) ; this estimate is higher than that
of Myles et al. (2007). The non-parametric esti-
mate of the posterior density of KCNJ11 is shown in
Figure 6, illustrating that the true value of the FST
parameter is very likely below 0.10. The posterior
inter-correlation structure between allelic frequen-
cies and KCNJ11 in the full model was examined

Figure 6. Density of the posterior distribution
od KCNJ11 obtained from allelic frequencies in

Myles et al. (2007.)

and, as expected, draws from the posterior distri-
butions of allelic frequencies in the three popula-
tions were uncorrelated. Samples of KCNJ11 were
positively correlated (0.55) with those for allelic
frequency in Chinese Han, and the 95% confidence
interval for the correlation was 0.51-0.60. How-
ever, draws for KCNJ11 were negatively correlated
with allele frequencies in Polynesians (-0.07) and
New Guineans (-0.39); the confidence intervals for
these two correlations were (−0.13,−0.01) and
(−0.44,−0.34) , respectively.

For the "null" model, the 1000 samples from the
posterior distribution of KCNJ11,Null ranged from
3.62 × 10−6 to 0.1460, with the posterior mean
(standard deviation) estimated at 0.002 (0.002);
the posterior median was 0.002 as well. The poste-
rior mean (standard deviation) estimate of KCNJ11
under the "full"model was 0.019, and it did not
enter with high density in the "null" model (not
shown). Although variation in allelic frequency
at locus KCNJ11 among the three populations de-
parts from what would be expected from chance
alone (statistical sampling), the observed value
is very small. This may support the hypothesis that
this locus may not be associated with differences
in prevalence of type II diabetes, in agreement with
Myles et al. (2007). Allelic frequencies were un-
correlated, as it should be, given that the three repli-
cates were drawn from the same Beta (209.5, 51.5)
distribution. The KCNJ11,Null statistic was uncorre-
lated with allelic frequencies, and the correlations
were -0.08, -0.11 and 0.03 in the three replicates,
with all confidence intervals including 0.

4. Clustering of −parameters

The second step of the procedure consists of
clustering a set of estimates of −values (in this
case, posterior means) from a multi-locus analy-
sis into data driven groups. The expectation is
that these clusters might be representative of differ-
ent processes taking place in the populations such
as balancing or directional selection, neutrality or
anything else.

The method is illustrated with data from a study
of Petit et al. (1998) in which alleles were sampled
for 12 isozyme loci of the Argania genus tree in
each of 12 areas (populations) of Morocco. The
data, given in page 847 of Petit et al. (1998),
were modified as shown in Table 1. The modifi-
cation consisted of treating all loci as bi-allelic by
lumping alleles for loci with more than 2 variants
into 2 classes. The number of individuals sampled
per population ranged between 20 and 50, and the
number of alleles per locus varied originally be-
tween 2 and 5. Note that, at some loci, one of
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the alleles was fixed in almost all populations. For
example, for locus 3, the only population in which
segregation was observed was TA.

For each locus, 2000 samples were drawn from
the beta posterior distributions of allelic frequen-
cies. For example, the posterior distribution of
pAB,1 was Beta (21.5, 19.5) . From these samples,
2000 draws from the posterior distribution of for
each locus were formed as in (10). The posterior
means were:[

1 2 3 4 5 6
0.098 0.168 0.791 0.166 0.393 0.137

7 8 9 10 11 12
0.299 0.382 0.593 0.095 0.122 0.190

]
so estimates of varied over loci from about 0.095
(locus 10) to 0.791 (locus 3); all these estimates
did not enter into the corresponding "null" distri-
butions. Boxplots of the posterior distributions
of the parameters are in Figure 7. Visually, it
is tempting to suggest four clusters: the first one
would include locus 3, with the posterior mean of

close to 0.79; the second cluster would include
locus 9, with an estimate of of 0.59. The third
cluster would include loci 5, 7 and 8 with estimates
ranging between 0.30 and 0.39, and the fourth clus-
ter would be represented by loci 1,2,4,6,10,11,12
having the lowest estimates of .

The existence of an underlying structure is sug-
gested by the distribution of all 24000 samples,
presented in Figure 8. In the left panel, a non-
parametric density estimate was obtained from

Figure 7. Boxplot of the posterior distributions
of –parameters in 12 isozyme loci of the argan
tree in Morocco (data originally from Petit et al.,

1998)

Figure 8. Non-parametric density estimates of
values (based on 2000 samples for each of 12
loci), logit ( ) and Gompit ( ). All samples
treated as homogeneous, i.e., as generated

from the same stochastic process.

these samples treated as if all draws (2000 for each
of the 12 loci) had been made from the same pro-
cess; the densities in the middle and right panels

correspond to the logit, i.e., log
(

1−
)

, and Gom-

pit, -log(− log ( )) , transforms of the sampled
values, respectively. The three densities suggest
that values cluster around 3, perhaps 4, modes.

The structure was explored more formally by
fitting a sequence of finite mixture models to the
means of the posterior distribution of the −values
for each of the 12 loci. These posterior means are
independent (under the assumptions made for the
allelic frequency models) but not identically dis-
tributed, since they are estimated with different
precision, due to unequal numbers of individuals
sampled and varying allelic frequencies. The dis-
tributions of −values among loci are not normal
(the logit and Gompit transforms would be ex-
pected to be more nearly so). This should not be
an issue because the mixture model was not used
for testing hypotheses; its objective, rather, was to
explore a clustered structure. Since there are only
12 posterior means, the mixture models must have
less than 12 parameters; otherwise, a perfect fit
would be obtained. The mixture model fitted to
the posterior mean estimates l postulated that

l or log

(
l

1 − l

)
or − log

(− log
(

l
))

∼
K∑

k=1

kN
(

l| k,
2
k

)
,
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where K is the number of components of the mix-
ture (clusters of posterior means of −values or
transforms thereof), k is the probability that l

belongs to cluster k (subject to
K∑

k=1
k = 1), and

k and 2
k are the mean and variance, respectively,

of component k. For example, if k = 2, there are
5 "free" parameters in the mixture; if k = 4, there
are 11 such parameters, so it is not sensible to
fit a model with more than 4 components. Mix-
ture model parameters were estimated by maxi-
mum likelihood via the expectation-maximization
algorithm as implemented in the FlexMix package
(Leisch, 2004) in the R project (R development
core team, 2008). Upon convergence (assuming
the stationary point was a global maximum), the
conditional probability that l (or its transforma-
tion) belongs to cluster k is calculated as

Pr (locus l ∈ cluster k|parameter estimates)

=
̂kN

(
l| k̂, ̂2

k

)
K∑

k=1
̂kN

(
l| k̂, ̂2

k

) .

The locus was assigned to the cluster with the
largest conditional probability. Models with dif-
ferent values of k = 1, 2, 3, 4 were compared using
Akaike’s information criterion (AIC), that is

AIC (K) = 2

[
pK −

12∑
l=1

log

(
K∑

k=1

̂kN
(

l| k̂, ̂2
k

))]
,

where pK is the number of parameters for a model
with K components (McLachlan and Peel, 2000).
Models with the smallest AIC values are preferred.
It is known that this criterion tends to overstate the
number of components due to violation of regu-
larity conditions in mixture models (Celeux and
Soromenho, 1996).

Results of the mixture model analysis, by num-
ber of components fitted, are shown in Table 2.
The AIC criterion favored a mixture with 2 clus-
ters when the response was either or its Gompit
transform, and a single component when the logit
transformation was used. Clearly, with data from
only 12 loci, the analyses did not have enough
power to resolve heterogeneity in a finer manner.
This would certainly not be the case with SNP
data, where the number of marker loci typically
oscillates between a few thousands in some animal
species to close to a million in humans. Classi-
fication probabilities using K = 2 and estimates
of cluster mean and standard deviation are shown
in Table 3. Irrespective of whether values were
transformed or not, loci were clustered into two

groups, one consisting of loci 3,5,7,8 and 9, pos-
sibly reflecting a selection signature, and the other
one including the remaining loci, presumably rep-
resenting neutral loci. The maximum likelihood
estimates of the mean and variance of values in
the cluster with loci 3,5,7,8 and 9 were 0.41±0.21,
whereas the corresponding estimates in the other
clusterwere 0.12±0.03. This assignment into clus-
ters is consistent with the picture emerging from
visual consideration of the box plots in Figure 7.

The two-step procedure is simple and does not
require the tailoring of problem-specific software.
However, it has the drawback of not taking into ac-
count the uncertainty associated with the posterior
distributions of the −parameters, inferred in the
first step. In principle, a better approach is to feed
the entire set of posterior samples to the clustering
procedure, such that not only the location of the
posterior distributions of the s is considered, but
their uncertainty as well. Although this is very ap-
pealing conceptually, it may create difficulties with
the EM algorithm, leading to convergence failure.
For instance Qanbari et al. (personal communica-
tion) employed the procedure with posterior means
(each calculated with 1 million samples from the
corresponding posterior distribution) with about
35,000 SNPs in Hereford and Simmental cattle.
When posterior means were used as data, the mix-
ture model approach revealed the existence of 4-5
clusters. However, when the 35 million samples
were used as data points, the EM algorithm, as
implemented in FlexMix, failed to converge. An
alternative to using the entire collection of samples
is to feed a selected set of percentiles of the poste-
rior distribution of each l, so that a proxy for the
dispersion of the individual posterior distributions
enters into the analysis.

5. Discussion

The use of F-statistics for the study of ge-
netic divergence between population dates back to
Wright (1931). Holsinger and Weir (2009) have
provided a justification for their usefulness, e.g.,
in association mapping and in detecting genomic
regions affected by evolutionary processes, such
as selection. These authors also reviewed different
types of statistical methods for inferring FST , in-
cluding Bayesian procedures. Method of moments
estimation was prompted by the linear model for-
malism of Cockerham (1969, 1973), and a review
is in Weir and Hill (2002). There has been an
increased interest in Bayesian methods, and im-
portant contributions in this front have been made
by Holsinger (1999, 2006), Beaumont and Balding
(2004) and Guo et al. (2009).
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In the Bayesian approaches that have been sug-
gested, e.g., Holsinger (1999), the model poses
a product binomial (or product multinomial in
the case of multiple alleles) likelihood function
for allelic frequencies, with conjugate prior dis-
tributions, such as beta or Dirichlet processes.
Marginalizing over the allelic frequencies yields
the beta binomial or Dirichlet-multinomial distri-
butions used by Balding (2003) for likelihood-
based inference. Holsinger (1999) matched the
mean and variance of, e.g., the beta distribution, to
the definition of , and obtained a joint posterior
distribution which is a function of the unknown
allelic frequencies, of (assumed exchangeable
over all loci) and of the mean allelic frequencies
in an undivided population. The implementation,
as well as those of Beaumont and Balding (2004)
and of Guo et al. (2009) requires Markov chain
Monte Carlo sampling (MCMC). While the power
and flexibility of hierarchical models coupled with
MCMC are well known (Sorensen and Gianola,
2002), implementations are not trivial and moni-
toring of convergence to the equilibrium distribu-
tion is a delicate matter (Cowles and Carlin, 1996).
The idea in these methods is that, under a neutral
model, all (over loci) should be realizations of
the same stochastic process. Outlying −values
may be suggestive of genomic regions affected by
selection. Typically, it is argued that loci are either
neutral, subject to balancing selection or to direc-
tional selection favoring alleles in specific envi-
ronments, e.g., Akey el al. (2002). However, the
assignment of loci to specific types of processes is
often arbitrary.

The present paper follows ideas of Holsinger
(1999) but it differs in two important respects. The
proposed method has two steps. First, allelic fre-
quencies are assigned a non-informative prior, so
that the mutual borrowing of information between
loci is limited, leading to less shrinkage of frequen-
cies towards a common value; in maximum likeli-
hood there is no shrinkage at all, an issue criticized
by Haldane (1948). Samples of allelic frequencies
can be obtained directly (actually, their posterior
distributions are tractable, analytically), and these
draws are used to form draws from the posterior
distribution of locus-specific −parameters, using
the parametric definition of FST as a function of
allelic frequencies. The first step was illustrated
with hypothetical data and with type II diabetes
data in Myles et al. (2007). The step leads to esti-
mates of the posterior distribution of the s which
can be used to explore underlying structure, pre-
sumably caused by different evolutionary forces.
In the second step, the structure is explored by us-
ing features of the posterior distribution of the s

(posterior means or transformations thereof) as re-
sponse variables in a mixture model. Data from
Petit et al. (1998) on 12 isozyme loci in 12 pop-
ulations of the argan tree in Morocco were used
to illustrate the second step. Here, the posterior
means of are treated as belonging to a mixture
of normal distributions which is then resolved into
data-supported components. Since the final ob-
jective is that of clustering loci according to their
similarity in − values, departures from normal-
ity are arguably of little consequence. Here, logit
and Gompit transformations were examined, and
the clustering procedure produced exactly the same
results. Using Akaike’s information criterion as a
gauge for model comparison, it was suggested that
the 12 estimates of clustered into two groups,
one representing putatively neutral loci (provided
that this group reflects variation due to drift), and
another one possibly corresponding to genomic re-
gions affected by selection. With 12 loci only, it
is unreasonable to expect a finer clustering struc-
ture. An ongoing study is applying the two-step
procedure to large scale SNP data in an animal
population and this will be reported in a future
communication.

As mentioned earlier in the paper, the two-step
procedure has the disadvantage of not incorporat-
ing the uncertainty about the posterior distributions
inferred in the first step. Although this can be
remedied by using all posterior samples as input
into the mixture model analysis, it can create nu-
merical difficulties with the EM algorithm. This is
an issue that needs additional research.

The method proposed here extends naturally to
multiple alleles. In this case the likelihood is prod-
uct multinomial, and the beta prior distribution is
replaced by a Dirichlet distribution with minimum
information content. The posterior distribution of
the allelic frequencies is product Dirichlet, which
is simple to sample from. Then, samples from the
posterior distribution of l would be drawn by eval-
uation of formulae similar to those in Nei (1973)
where −parameters are averaged over alleles. For
example, one could define

l =
M∑

m=1

pl,m

R∑
r=1

(pr,l,m−pl,m)
2

R

pl,m

(
1 − pl,m

)

=
M∑

m=1

R∑
r=1

(
pr,l,m − pl,m

)2

R
(
1 − pl,m

)
where pr,l,m is the frequency of allele m at locus l
in population r and pl,m is the unweighted average
over the R populations.
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In commonwith the studies ofHolsinger (1999),
Beaumont and Balding (2004), Weir et al. (2005)
and Guo et al. (2009) the procedure presented here
assumes that allelic frequencies are in linkage equi-
librium, so that the likelihood of all allelic frequen-
cies is either product binomial or product multi-
nomial. Accommodating linkage disequilibrium,
especially with dense batteries of marker loci, rep-
resents a formidable task and it is a challenge for fu-
ture research. For example, Akey et al. (2002) and
Weir et al. (2005) reported that −values of loci in
regions of high linkage disequilibrium were simi-
lar. Guo et al. (2009) address correlations due to
linkage, but not due to linkage disequilibrium, and
do so by introducing a spatial structure for loci lo-
cated in the same chromosome. Specifically, they
proposed an autoregressive model in which logit
transforms of −values are correlated according
to physical distance. The model is quite involved
and requires MCMC computations. However, loci
may be in linkage disequilibrium even though not
being physically linked (Crow and Kimura, 1970),
and such disequilibrium is very common in animal
populations (Sandor et al., 2006; de Roos et al.
2008; Lipkin et al., 2009; Qanbari et al.), where
finite size and selection under epistasis are factors
in building up linkage disequilibrium. The two-
step approach considered here could be enhanced
by exploring algorithms alternative to EM as well
as by consideration of different types of mixtures,
e.g., of beta distributions, which are more appro-
priate for random variables taking values in (0, 1) .
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Appendix A: First derivatives of with respect to allelic frequencies

Let p.,l =
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Appendix B: Approximate Bayesian analysis

An approximate Bayesian analysis without sampling from the posterior distribution is also possible.
An approximation to the mean and variance of the posterior distribution of l can be obtained using a

Taylor series expansion about the modes p̃r,l of the allelic frequencies. Let now ∇̃ =
{

∂
∂pr,l

l

}
pr,l==p̃r,l

. be

an R×1 vector of first derivatives evaluated at the posterior mode estimates (8) of the allelic frequencies.
Then, approximately

l ≈ l̃ + ∇̃′
(pl − p̃l) ,

where p̃l is the vector of posterior mode estimates of allele frequencies in the R groups. Then, approxi-
mately

E ( l|DATA)

≈ l̃ +
R∑

r=1

{
∂

∂pr,l
l

}
pr,l=p̃r,l

(
nr,Al + 1

2

2nr + 1
− nr,Al − 1

2

2nr − 1

)

= l̃ +
R∑

r=1

{[
2
(
pr,l − p.,l

)
p2

.,l − p2
.,l

−
(
1 − 2p.,l

)
p.,l

(
1 − p.,l

)] l

R

}
pr,l=̃pr,l

(
nr,Al + 1

2

2nr + 1
− nr,Al − 1

2

2nr − 1

)
(14)

Likewise
Var ( l|DATA) ≈ ∇̃′

Var (pl|DATA) ∇̃.

Since allelic frequencies have mutually independent distributions, the R × R variance-covariance matrix
Var (pl|DATA) is diagonal with elements given by (9). Thus
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]
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In short, each l (l = 1, 2, ...,L) statistic will have a point estimate and an assessment of uncertainty,
e.g., a credibility interval of size 95% given by the 2.5% and 97.5% percentiles of the corresponding
posterior distribution estimated from samples, or from using a normal theory approximation, e.g.,

l̃ + 2
R∑

r=1

{[
2 (pr,l − pl)

p2
l − p2

l

− (1 − 2pl)
pl (1 − pl)

]
l

R

}
pr,l=̂pr,l

(
nr,Al + 1

2

2nr + 1
− nr,Al − 1

2

2nr − 1

)

±1.96

√√√√√ R∑
r=1

{[
2 (pr,l − pl)

p2
l − p2

l

− (1 − 2pl)
pl (1 − pl)

]
l

R

}2

pr,l=̂pr,l

(
nr,Al + 1

2

) (
nr,al + 1

2

)
(2nr + 1)2 (2nr + 2)

.

18



Table 1. Allelic frequencies at 12 isozyme loci in each of 12 Argan tree populations, adapted from
Petit et al. (1998) by making all loci bi-allelic. A1-A12 represent frequencies of the "A" allele at loci
1-12; No. A1-No. A12 are the observed number of copies of the alelles. The number of "a" alleles can
be calculated from the number of individuals samples and the number of "A" alleles observed.
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Table 2. Comparison of mixture models with 2, 3 or 4 components fitted to the 12 posterior means
of −parameters and their logit or Gompit transforms in the argan tree data of Petit et al. (1998). AIC:
Akaike’s information criterion (models with smallest values are favored and indicated in boldface)

Variable No. components (k) Iterations to convergence AIC

k=1 2 -0.651

k=2 16 -6.299
k=3 36 -2.921

k=4 39 3.079

log1− k=1 2 39.100

k=2 28 40.102

k=3 77 44.392

k=4 94 50.392

-log[− log ( )] k=1 2 26.909

k=2 36 24.328
k=3 41 27.742

k=4 48 33.742

Table 3. Conditional probabilities of membership to one of two clusters for mixture models fitted

to the posterior means of for the 12 loci in the argan tree, and their logit, log
(

1−
)

, and Gompit,

-log(− log ( )) , transformations (boldfaced probability indicates the cluster with largest probability of
membership).

means logit( ) Gompit( )
Locus Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

1 0.93 0.07 0.91 0.09 0.91 0.09

2 0.92 0.08 0.83 0.17 0.89 0.11

3 0.00 1.00 0.00 1.00 0.00 1.00
4 0.92 0.08 0.82 0.18 0.88 0.12

5 0.00 1.00 0.00 1.00 0.00 1.00
6 0.95 0.05 0.91 0.09 0.93 0.07

7 0.00 1.00 0.08 0.92 0.04 0.96

8 0.00 1.00 0.00 1.00 0.00 1.00
9 0.00 1.00 0.00 1.00 0.00 1.00
10 0.92 0.08 0.89 0.11 0.89 0.11

11 0.95 0.05 0.92 0.08 0.93 0.07

12 0.87 0.13 0.76 0.24 0.83 0.17

Cluster Mean 0.12 0.41 -2.03 -0.52 -0.11 0.76

Cluster standard deviation 0.03 0.21 0.32 1.02 0.67 0.13
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